Neuroscience Graduate Program Contacts:

Program Director:
Volker E. Neugebauer, M.D., Ph.D.
2.104-D MRB, Route 1069
Phone Number: 409-772-5259

Associate Program Director:
Giulio Taglialatela, Ph.D.
10.104A MRB, Route 1043
Phone Number:  409-772-1679

NOD Track Director:
Jose M. Barral, M.D., Ph.D.
5.212-C Research Bldg., Route 0620
Phone Number: 409-747-2180

Interim Program Coordinator:
Phyllis Heyder-Black
120-E BSB, Route 0625
Phone Number:  409-772-2124

 

Neuroscience Graduate Program

Understanding nervous system functions and disorders from molecules to mind is one of the greatest challenges facing the biomedical sciences.  A multidisciplinary enterprise and one of the fastest advancing domains of science and technology, Neuroscience addresses questions fundamental to human nature.  How does brain activity lead to perception, cognition, emotion, and other behaviors?  How do genes and experience ("nature and nurture") shape our brains, our minds, and who we are?  What is the neurobiological basis of nervous system disorders that so dramatically impact our ability to function normally?  How can we protect, restore and enhance brain and other nervous system functions?  Resolution of these grand challenges can do more to explain and predict the human condition than any other realm of science.

Objective and Scope of the Training Program

The Neuroscience Graduate Program (NGP) at UTMB established in 1981 was the first Ph.D. program in neuroscience in Texas.  The rich interdisciplinary program of course work and research provides an internationally competitive education that enhances a trainee's ability to become a scholarly and productive contributor to our knowledge of nervous system function and disease mechanisms.

It is anticipated that our graduates will become researchers and/or teachers in the field of neuroscience in academic institutions, industry, biotechnology or government.  The program is designed to be rigorous but flexible and is explicitly multidisciplinary.  Research can be done in areas ranging from molecules to excitable membranes to behavior, using preparations ranging from cell cultures to isolated ganglia to brain slices to intact nervous systems of invertebrates and vertebrates.

Students are exposed to a broad, integrated foundation of courses in the biomedical sciences and to fundamental neurobiological concepts. They also gain exposure to modern experimental techniques: immunocytochemistry; live cell imaging; electron and confocal microscopy; nuclear magnetic resonance-based imaging; electrophysiological methods of extracellular recording and patch-clamping;  molecular, biochemical and pharmacological methods for identifying and characterizing drugs and drug targets, neurotransmitters, peptides, growth factors, receptors, chaperones and other intracellular signaling molecules; immunological, cell culture, and multitude of behavioral assays.  Major areas of research strength in the program include: neuroplasticity, learning and memory; pain mechanisms, neural injury and brain trauma; drug abuse and addiction; neurodegenerative disorders (Alzheimer's, Parkinson's, ALS), other conditions and disorders affecting the nervous system.

Our goal is to graduate neuroscientists who have a broad base of experience with modern experimental skills and comprehensive knowledge background of the organization, structure and functions of nervous systems and who will seek to explore cellular and molecular mechanisms of important nervous system functions and disorders.