ROLE OF PD1/PDL1 IN THE INDUCTION OF REGULATORY T CELLS DURING LEISHMANIA AMAZONENSIS INFECTION

De Matos Guedes HL1,2, Carlsen ED1, Yuejin Liang1, Hay C1, Henard C1, Pinchuk IV1, Cong Y1, Soong L1.

1University of Texas Medical Branch, Galveston, TX, 2Universidade Federal do Rio de Janeiro

\textit{Leishmania amazonensis} is the etiological agent of diffuse cutaneous leishmaniasis in South America. In murine models of this infection, dysregulated expansion of effector T cells is related to pathogenesis, while the induction of regulatory T cells (Treg) promotes lesion resolution. The most important co-stimulator/receptor pairs for Treg induction are PD1/PDL1, ICOS/ICOSL, OX40/OX40L and GITR/GITR. In this study, we examined the roles of these molecules in \textit{L. amazonensis}-infected C57BL/6 mice. We found that infected foot tissues had a 10- and 5-fold increase in PD1 and PDL1 expression levels, respectively, with minimal changes for other receptor/ligand pairs. In skin-draining lymph nodes of infected mice, there were an increase in the percentage of CD11c+PDL1+ dendritic cells (DC) and PD1+CD4+ T cells. To evaluate PDL1 expression on DC, we performed \textit{in vitro} infection with promastigotes and amastigotes. \textit{L. amazonensis} infection resulted in an increased PDL1, but decreased PD-L2, expression on DC surface. This induction-triggered PDL1 expression was dependent on STAT3, PI3K and mTOR, but not on STAT5, MAPK/ERK and MyD88. Infected DCs were more competent in inducing CD25+FoxP3+ Treg in vitro than the control cells, and this Treg-promoting effect was dependent on PDL1 expression but not on TGF-beta production. Together, these data suggest a role for PD1/PDL1 in the regulation of local immune responses during \textit{L. amazonensis} infection. This study provides new insights on immune regulation of cutaneous leishmaniasis.