Controversies in Otolaryngology: Evaluation and Management of Bell’s Palsy

Russell D. Briggs, M.D.
Faculty Advisor: Byron J. Bailey, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
January 29, 2002
Introduction

- Medical management controversial
 - Steroids
 - Antivirals
- Surgical management controversial
 - Decompression
- Clinical confusion
Bell’s Palsy

- Facial paralysis
 - Acute onset, limited duration, minimal symptoms, spontaneous recovery
 - Idiopathic in past
 - Diagnosis of exclusion
 - Most common diagnosis of acute facial paralysis
Etiology

- Past theories: vascular vs. viral
- McCormick (1972) – herpes simplex virus
- Murakami (1996)
 - 11/14 patients with HSV-1 in neural fluid
 - None in controls or Ramsay-Hunt syndrome
- Temporal bone section at autopsy
- Animal model inoculated with HSV-1
Natural History

- Peiterson (1982): 1011 patients
 - Every decade of life, mean between 40-44
 - 6-9% recurrent Bell’s palsy, M=W
 - Facial paresis (31%) -- 95% recover
 - Facial paralysis (69%)
 - 71% House-Brackmann grade I
 - 13% House-Brackmann grade II
 - 16% House-Brackmann grades III-V (fair-poor)
Natural History

- Delayed recovery over 3 months – all patients with sequelae
- No permanent House-Brackmann grade VI
- Overall, 85% recover to normal within one year without treatment
Evaluation

- Careful history – timing
 - Associated symptoms (pain, dysgeusia)
 - SNHL, vesicles, severe pain
 - Trauma, acute or chronic OM, recurrent
 - Exposures

- Physical exam
- Audiometry
- CT/MRI/other
- Topographic
- Electrophysiology
Anatomy

- Intracranial
- Meatal
- Labyrinthine (2-4 mm)
- Tympanic (11 mm)
- Mastoid (13 mm)
- Extracranial
Anatomy
Pathophysiology

- HSV viral reactivation leading to damage of facial nerve
 - Neuropraxia– no axonal discontinuity
 - Axonotmesis
 - Wallerian degeneration (distal to lesion)
 - Axoplasmic disruption, endoneural sheaths intact
 - Neurotmesis
 - Wallerian degeneration (distal to lesion)
 - Axon disrupted, loss of tubules, support cells destroyed
Electrophysiology

- Treatment plan based on 16% of patients who do not fully recover
- Several tests used for prognosis
 - Measure amounts of neural degeneration occurred distal to injury by measuring muscle response to electrical stimulus
 - NET, MST, ENoG, EMG
 - Able to differentiate nerve fibers undergoing Wallerian degeneration
Electrophysiology

- **NET (nerve excitability test)**
 - Hilger first described in 1964
 - Compares current thresholds to elicit minimal muscle contraction
 - 3.5 mA difference significant

- **MST (maximum stimulation test)**
 - Compares responses generated with maximal electrical stimulation judged as difference in facial movement
 - Absent or markedly decreased significant
Electrophysiology

- ENoG (electroneuronography)
 - Most accurate, objective
 - Records summation potential (CAP)
 - Degree of degeneration is directly proportional to amplitudes of measured potentials
 - Done after Wallerian degeneration starts (3-4 days)
 - Compare each day
Electrophysiology
Electrophysiology

- ENoG
 - Esslen (1977) – over 90% degeneration on ENoG prognosis worsens
 - 90-97%: 30% recover fully
 - 98-99%: 14% recovery fully
 - 100%: none recovered fully
 - Fisch (1981)
 - 50% with 95-100% degeneration by 14 days have poor recovery
 - High likelihood of further degeneration if reaches 90%
 - Thus, if ENoG reaches 90% within 2 weeks: 50-50 recovery
Electrophysiology

- EMG (electromyography)
 - Not useful in acute phase except as complementary test
 - Will be flat with neuropraxia, 100% degeneration, and early regeneration
 - Key in long-term evaluation (over 3 weeks)
 - Fibrillation potentials—degeneration
 - Polyphasic motor units—regenerating nerve
Medical Management

- Eye protection
- Steroids
 - Stankiewitz (1987) – no efficacy
 - Austin (1993) – randomized, double blind, placebo controlled study
 - Improvement in grade with prednisone
 - All with prednisone (House 1-2)
 - 17% without House 3 (statistically significant)
 - Trend towards denervation protection
Medical Management

- Antivirals
 - Adour (1996)– double blind
 - Only 20% progressed to complete paralysis
 - Acyclovir had less degrees of facial weakness
 - Acyclovir had lower incidence of House 3-5

- Conclusions
Surgical Management

- Spirited debate over years
 - No surgery
 - Immediate decompression when complete
- Balance and Duel (1932)– first surgery
- McNeill (1970)– no benefit (geniculate to stylomastoid foramen)– after 14 days
Surgical Management

- Fisch and Esslen (1972)– 12 patients
 - Total facial nerve decompression via middle cranial fossa and transmastoid
 - Found conduction block at meatal foramen (94% patients)
- Fisch (1981)
 - Decompression within 14 days for 90% degeneration for maximum benefit
- May (1979)
 - Transmastoid decompression beneficial (decreased SF, Schirmer’s, MST reduced)
- May (1984)
 - No patients benefited from surgery within 14 days
Surgical Management

- Gantz (1999) – multi-institutional review
 - Assess if patients with degeneration over 90% within 14 days would benefit
 - Middle cranial fossa (meatal foramen to tympanic segment)
 - If conductive block not identified (6%) – transmastoid added
 - 92% with surgery recovered to House 1-2
 - 45% without surgery to House 1-2
Case Study

- 50 yo male presents with one day history of “my face isn’t moving”
Case Study

- 50 yo male presents with one day history of “my face isn’t moving”
 - Occurred overnight
 - No ear pain, previous viral illness
 - No hearing loss
 - No prior history, no family history
 - No other associated symptoms
Case Study

- PMH: HTN
- PSH: appendectomy
- Meds: HTN meds
- SH: no tobacco or Etoh
- FH: no family history of similar events
- ROS: N/C
Case Study

- Physical examination
 - Ears normal, ?hyperemia of chorda on R
 - Face with complete paralysis on right, uniform
 - Remainder of exam normal
Case Study

Physical examination

- Ears normal, ?hyperemia of chorda on R
- Face with complete paralysis on right, uniform
- Remainder of exam normal
- Audiogram normal
Case Study
Case Study
Case Study
Case Study

RESULTS ARE AND SUGGESTIONS DELAYED OR REACTING INCOMPLETELY VARYING RECOVERY

LATENCY 4.00 ms/div

A1 62.5µV
A2 62.5µV
A3 62.5µV
A4 62.5µV
A5 62.5µV
A6 62.5µV
Case Study
Case Study