Bell’s Palsy

Diagnostic and Treatment Considerations

Viet Pham, MD
Dayton Young, MD
Tomoko Makishima, MD, PhD
The University of Texas Medical Branch (UTMB Health)
Department of Otolaryngology
Grand Rounds Presentation
October 29, 2012
Outline

- Anatomy
- Pathophysiology
- Diagnostics
- Treatment
- Conclusions

Before Bell’s Palsy

After Bell’s Palsy
Facial Nerve Anatomy

- Contains 7,000-10,000 fibers
- Nuclei
 - Somatic – Motor
 - Taste – Tractus solitarius
 - Secretomotor – Superior salivatory
- Segments
 - Intracranial (cisternal)
 - Meatal
 - Labyrinthine
 - Tympanic
 - Mastoid
 - Extratemporal

(J Neurol Neurosurg Psychiatry 2001;71:149-154)
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

(radiopaedia.org)
(info.med.yale.edu)
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

- Internal auditory canal (IAC)
- 8mm
- Zero branches

(Lalwani AK, ed. Current Diagnosis and Treatment: Otolaryngology Head and Neck Surgery. 2nd Ed.)
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

- IAC to geniculate ganglion
- 3-4mm
- Three branches from geniculate ganglion

(Lalwani AK, ed. Current Diagnosis and Treatment: Otolaryngology Head and Neck Surgery, 2nd Ed.)
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

- Geniculate ganglion to pyramidal eminence
- 8-11mm
- Zero branches

(Lalwani AK, ed. Current Diagnosis and Treatment: Otolaryngology Head and Neck Surgery. 2nd Ed.)
Facial Nerve
Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

- Pyramidal eminence to stylomastoid foramen
- 8-14mm
- Three branches
Facial Nerve Segments

- Intracranial
- Meatal
- Labyrinthine
- Tympanic
- Mastoid
- Extratemporal

- Stylomastoid foramen to major branches
- 15-20mm

(www.facialparalysisinstitute.com)
House-Brackmann Scale

(House 1985)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Forehead</th>
<th>Eye</th>
<th>Mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>II</td>
<td>slight weakness</td>
<td>moderate to good movement</td>
<td>complete closure minimal</td>
<td>slight asymmetry</td>
</tr>
<tr>
<td></td>
<td>non-disfiguring weakness</td>
<td>slight to moderate movement</td>
<td>complete closure maximal</td>
<td>slight weakness maximal effort</td>
</tr>
<tr>
<td>III</td>
<td>disfiguring weakness</td>
<td>none</td>
<td>incomplete closure</td>
<td>asymmetric with maximal effort</td>
</tr>
<tr>
<td>IV</td>
<td>minimal movement</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td>V</td>
<td>asymmetric</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
House-Brackmann Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Forehead</th>
<th>Eye</th>
<th>Mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>II</td>
<td>slight weakness normal resting tone</td>
<td>moderate to good movement</td>
<td>complete closure minimal effort</td>
<td>slight asymmetry</td>
</tr>
<tr>
<td>III</td>
<td>non-disfiguring weakness normal resting tone</td>
<td>slight to moderate movement</td>
<td>complete closure maximal effort</td>
<td>slight weakness maximal effort</td>
</tr>
<tr>
<td>IV</td>
<td>disfiguring weakness normal resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>asymmetric with maximal effort</td>
</tr>
<tr>
<td>V</td>
<td>minimal movement asymmetric resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
House-Brackmann Scale

(House 1985)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Forehead</th>
<th>Eye</th>
<th>Mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>II</td>
<td>slight weakness normal resting tone</td>
<td>moderate to good movement</td>
<td>complete closure minimal effort</td>
<td>slight asymmetry</td>
</tr>
<tr>
<td>III</td>
<td>non-disfiguring weakness normal resting tone</td>
<td>slight to moderate movement</td>
<td>complete closure maximal effort</td>
<td>slight weakness maximal effort</td>
</tr>
<tr>
<td>IV</td>
<td>disfiguring weakness normal resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>asymmetric with maximal effort</td>
</tr>
<tr>
<td>V</td>
<td>minimal movement asymmetric resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
House-Brackmann Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Forehead</th>
<th>Eye</th>
<th>Mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>II</td>
<td>slight weakness</td>
<td>normal resting tone</td>
<td>complete closure</td>
<td>slight asymmetry</td>
</tr>
<tr>
<td></td>
<td>normal resting tone</td>
<td>moderate to good movement</td>
<td>minimal effort</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>non-disfiguring weakness</td>
<td>slight to moderate</td>
<td>complete closure</td>
<td>slight weakness</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>movement</td>
<td>maximal effort</td>
<td>maximal effort</td>
</tr>
<tr>
<td>IV</td>
<td>disfiguring weakness</td>
<td>none</td>
<td>incomplete closure</td>
<td>asymmetric with maximal effort</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal resting tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>minimal movement</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td></td>
<td>asymmetric resting tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

(House 1985)
House-Brackmann Scale

(House 1985)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Appearance</th>
<th>Forehead</th>
<th>Eye</th>
<th>Mouth</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
<td>normal</td>
</tr>
<tr>
<td>II</td>
<td>slight weakness normal resting tone</td>
<td>moderate to good movement</td>
<td>complete closure minimal effort</td>
<td>slight asymmetry</td>
</tr>
<tr>
<td>III</td>
<td>non-disfiguring weakness normal resting tone</td>
<td>slight to moderate movement</td>
<td>complete closure maximal effort</td>
<td>slight weakness maximal effort</td>
</tr>
<tr>
<td>IV</td>
<td>disfiguring weakness normal resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>asymmetric with maximal effort</td>
</tr>
<tr>
<td>V</td>
<td>minimal movement asymmetric resting tone</td>
<td>none</td>
<td>incomplete closure</td>
<td>slight movement</td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Grade</td>
<td>Appearance</td>
<td>Synkinesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>normal</td>
<td>normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>slight weakness</td>
<td>synkinesis barely noticeable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal resting tone</td>
<td>contracture or spasm absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>non-disfiguring weakness</td>
<td>obvious but not disfiguring synkinesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal resting tone</td>
<td>mass movement or spasm present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>disfiguring weakness</td>
<td>severe synkinesis, mass movement, or spasm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normal resting tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>minimal movement</td>
<td>synkinesis, contracture, and spasm usually absent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>asymmetric resting tone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>asymmetric</td>
<td>no synkinesis, contracture, or spasm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bell’s Palsy

- Sir Charles Bell first described facial paralysis in 1818
- Acute but limited facial paralysis
 - Rapid onset
 - Few associated symptoms
 - Spontaneous recovery
- Most common diagnosis for facial nerve palsy
- Diagnosis of exclusion
 - Historically thought to be idiopathic
 - Herpes simplex virus (HSV) reactivation

(BMJ 2004; 329(7465):553–557.)
Bell’s Palsy

Demographics

- Incidence of 30 per 100,000
 - Pregnant females (3.3 times greater)
 - Diabetics (4-5 times greater)
- Equal gender distribution in middle age
 - Females, 10-19 years (twice as common)
 - Males, > 40 years (1.5 times greater)
- Equal unilaterality
- Bilateral involvement in less than 1%
- Recurrence rate of 10%
- Positive family history in 10%
Bell’s Palsy
Natural History

- Outcomes of 1011 untreated patients (Peiterson 1982)
- Mean age between 40-44 years
- Less common before 15 years and after 60 years
- No gender predilection
- Recurrence in 6-9%
Bell’s Palsy

Natural History

- Outcomes of 1011 untreated patients (Peiterson 1982)
 - Paresis alone
 - Occurred in 31%
 - Complete recovery in 95%
 - Complete unilateral paralysis in 69%
 - Some recovery by 3 weeks (85%)
 - House-Brackmann 1 in 71%
 - House-Brackmann 2 in 13%
 - House-Brackmann 3-5 in 16%
Bell’s Palsy
Natural History

- Outcomes of 1011 untreated patients (Peiterson 1982)
- Complete recovery by one month in 85%
- Progression to complete degeneration in 15%
 - Signs of recovery after 3-6 months
 - Sequelae associated with longer recovery
 - Diminished function
 - Contracture with movement
 - Tearing
Bell’s Palsy
Associated Symptomatology

- Outcomes of 1011 untreated patients (Peiterson 1982)
- Reduced stapedial reflex
- Postauricular pain
- Dysgeusia
- Decreased lacrimation
- Phonophobia
Bell’s Palsy

Pathophysiology

- Historically thought to be idiopathic
- Two theories
 - Vascular congestion
 - Viral polycranioneuropathy
Pathophysiology
Vascular Congestion

- Autonomic vascular instability (Mcgovern 1955)
- Spasm of nutrient arterioles
 - Secondary ischemia
 - Nerve edema
 - Compression within fallopian canal
- Possible triggers
 - Cold temperature
 - Psychosomatic
Pathophysiology

Infectious

- Acute infectious polyneuritis cerebralis acusticofacialis by Antoni in 1919 (Freidman 2000)
- Facial nerve edema from viral inflammatory response
- HSV proposed etiology in 1972 (McCormick)
Pathophysiology

Infectious

- Burgess (1994)
- Surgita (1995)
- Murakami (1996)
- Furuta (1998)
Pathophysiology

Infectious

- Burgess (1994)
- Surgita (1995)
- Murakami (1996)
- Furuta (1998)

- Patient who died six days after developing Bell’s palsy
- HSV type 1 (HSV-1) DNA in temporal bone section
Infectious

- Burgess (1994)
- Surgita (1995)
- Murakami (1996)
- Furuta (1998)

- Inoculation of mice with HSV-1 DNA
 - Auricle in 104
 - Tongue in 30

- Transient facial paresis
 - Began 6-9 days after inoculation
 - Spontaneous recovery after 3-7 days

- Histopathology
 - Neural edema
 - Inflammatory cell infiltration
 - Vacuolar degeneration

- HSV antigens
 - Beginning 6-20 days after inoculation
 - Facial nerve, geniculate ganglion, and facial nerve nucleus
Pathophysiology

Infectious

- Burgess (1994)
- Surgita (1995)
- Murakami (1996)
- Furuta (1998)

- Transmastoid decompression during active phase of disease
- HSV-1 in endoneural fluid of 11 out of 14 with Bell’s palsy
 - No varicella-zoster virus (VZV)
 - No Epstein Barr
- Ramsay Hunt
 - VZV present
 - No HSV-1
- Trauma or neoplasm
 - No HSV-1
 - No VZV
Pathophysiology

Infectious

- Burgess (1994)
- Surgita (1995)
- Murakami (1996)
- Furuta (1998)

- Polymerase chain reaction of saliva
 - Bell’s palsy in 47
 - Ramsay Hunt in 24
 - Healthy, HSV-positive in 16 (control)

- HSV-1
 - In 50% with Bell’s palsy
 - In 19% of controls

- Testing within 7 days
 - HSV-1 in 40% of Bell’s palsy
 - HSV-1 in 7% of Ramsay Hunt

- HSV-1 usually undetectable by second week
- **McKeever (1987)**
 - Lymphocytic infiltrate
 - Myelin degeneration
 - Most pronounced at labyrinthine segment
- **And perineural edema** (Donoghue 1983; Podvinec 1984)
- **Facial nerve entrapped at meatal foramen** (Fisch 1983)
 - Conductive block at this site (Gantz 1982)
 - Ischemia with increased or prolonged constriction
 - Wallerian degeneration results
 - Axonotmesis
 - Neurotmesis

(Lalwani AK, ed. *Current Diagnosis and Treatment: Otolaryngology Head and Neck Surgery, 2nd Ed.*)
Bell’s Palsy

Diagnostics

- History
- Physical examination
- Radiology
- Topography
- Audiology
- Electrophysiology
Hearing loss or vertigo

Timing
- Sudden onset
- Evolution over 2-3 weeks

Presence of ear disease

Vesicular eruption

Bilateral

Recurrence
Diagnostics

History and Physical Examination

- Hearing loss or vertigo
 - Timing
 - Sudden onset
 - Evolution over 2-3 weeks
 - Presence of ear disease
 - Vesicular eruption
 - Bilateral
 - Recurrence

- Symmetric audiological function
- Absent ipsilateral acoustic reflex
- Bell’s palsy questioned if vertiginous
- Clinical threshold for cerebrovascular accident

Diagnostics

History and Physical Examination

- Hearing loss or vertigo
 - Timing
 - Sudden onset
 - Evolution over 2-3 weeks
 - Presence of ear disease
 - Vesicular eruption
 - Bilateral
 - Recurrence

- Symmetric audiological function
- Absent ipsilateral acoustic reflex
- Bell’s palsy questioned if vertiginous
- Clinical threshold for cerebrovascular accident
Diagnoses

History and Physical Examination

- Hearing loss or vertigo
- **Timing**
 - Sudden onset
 - Evolution over 2-3 weeks
- Presence of ear disease
- Vesicular eruption
- Bilateral
- Recurrence

- Occurs over 24-48 hours
- Can progress to complete paralysis over 1-7 days
- Rule out neoplasm if evolution past 3 weeks
Diagnostics

History and Physical Examination

- Hearing loss or vertigo
- Timing
 - Sudden onset
 - Evolution over 2-3 weeks
- Presence of ear disease
- Vesicular eruption
- Bilateral
- Recurrence

- Chronic otitis media
- Cholesteatoma
Diagnostics

History and Physical Examination

- Hearing loss or vertigo
- Timing
 - Sudden onset
 - Evolution over 2-3 weeks
- Presence of ear disease
- Vesicular eruption
- Bilateral
- Recurrence

- Ramsay-Hunt syndrome
Hearing loss or vertigo

Timing
 - Sudden onset
 - Evolution over 2-3 weeks

Presence of ear disease

Vesicular eruption

Bilateral

Recurrence

- Guillain-Barre syndrome
- Lyme disease
- Intracranial neoplasm
Diagnostics

History and Physical Examination

- Hearing loss or vertigo
- Timing
 - Sudden onset
 - Evolution over 2-3 weeks
- Presence of ear disease
- Vesicular eruption
- Bilateral
- Recurrence

Diagnostics

History and Physical Examination

- Usually excludes Bell’s palsy
- Melkersson-Rosenthal syndrome

(Rev Bras Otorrinolaringol. 2002; 68(5): 755-760)
- Localize lesion
- Computed tomography
 - Trauma
 - Mastoiditis
 - Cholesteatoma
- Magnetic resonance imaging (MRI)
 - Nerve enhancement
 - No correlation with site or degree of enhancement
 - Exclude neoplasm
Diagnostics

Topography

- Schirmer test → greater superficial petrosal
- Stapedial reflex → stapedial branch
- Electrogustometry → chorda tympani
- Salivary flow → chorda tympani
- Unable to predict location or outcome
Diagnostics

Audiology

- Evaluate for pathology of eighth cranial nerve
- Bell’s palsy
 - Symmetric audiological function
 - Absent ipsilateral acoustic reflex
- Retrocochlear pathology
 - Asymmetrical thresholds
 - Acoustic reflex decay
Diagnostics
Electrophysiology

- Provides prognostic information
 - Not used for paresis only
 - Initiated 3 days after progression to complete paralysis

- Tests
 - Nerve excitability test (NET)
 - Maximum stimulation test (MST)
 - Electroneuronography (ENoG)
 - Electromyography (EMG)
Diagnostics

Electrophysiology

- Nerve injury
 - Neuropraxia: conduction block but with axonal continuity
 - Axonotmesis: axoplasmic disruption but endoneural sheath preservation
 - Neurotmesis: disruption of axonal and supportive cells

- Test results
 - Neuropraxia
 - Axonotmesis
 - Neurotmesis
Nerve injury

- Neuropraxia: conduction block but with axonal continuity
- Axonotmesis: axoplasmic disruption but endoneural sheath preservation
- Neurotmesis: disruption of axonal and supportive cells

Test results

- Neuropraxia
- Axonotmesis
- Neurotmesis
Nerve injury
- Neuropraxia: conduction block but with axonal continuity
- Axonotmesis: axoplasmic disruption but endoneural sheath preservation
- Neurotmesis: disruption of axonal and supportive cells

Test results
- Neuropraxia
- Axonotmesis
- Neurotmesis
 - NET, MST, and ENoG normal
 - No voluntary motor action potentials on EMG
Nerve injury
- Neuropraxia: conduction block but with axonal continuity
- Axonotmesis: axoplasmic disruption but endoneural sheath preservation
- Neurotmesis: disruption of axonal and supportive cells

Test results
- Neuropraxia
- Axonotmesis
- Neurotmesis
 - NET, MST, and ENoG with rapid and complete degeneration
 - EMG
 - No voluntary motor action potentials
 - Myogenic fibrillation potentials after 10-14 days
Nerve injury
- Neuropraxia: conduction block but with axonal continuity
- Axonotmesis: axoplasmic disruption but endoneural sheath preservation
- Neurotmesis: disruption of axonal and supportive cells

Test results
- Neuropraxia
- Axonotmesis
- Neurotmesis
 - Similar results as axonotmesis
 - Less predictable outcome
 - Cannot differentiate between the two
Described by Hilger in 1964

Compare thresholds for minimal muscle contraction
- Normal side
- Paralyzed side

Difference of 3.5mA
- Severe degeneration
- Higher likelihood of poorer outcome

Inaccurate within first 3 days of Bell’s palsy onset

Subjective comparison
Electrophysiology

Maximum Stimulation Test

- Compare facial movement with maximum stimulation
- Greater degree of weakness with worsening degeneration
- Inaccurate within first 3 days of Bell’s palsy onset
- Subjective comparison
Electrophysiology

Electroneuronography

- Compares compound action potential of both sides
 - Stimulate nerve at stylomatoid foramen
 - Measure muscular response near nasolabial groove
- Less intact motor axons with Wallerian degeneration
- Worse prognosis with rapid degeneration
- Inaccurate within first 3 days of Bell’s palsy onset
- Quantitative analysis, observer independent

(Am J Otol 1992; 13:127–133.)
Electrophysiology

Electroneuronography

- **Esslen (1977)**
 - Full recovery in 88% if < 90% degeneration
 - Full recovery in 30% if 90-95% degeneration
 - No full recovery if 100% degeneration

- **Fisch (1981)**
 - Satisfactory spontaneous recovery if < 90% degeneration within 3 weeks of onset
 - High likelihood of 95% degeneration if reach 90% degeneration
 - Permanent unsatisfactory result in 50% with 95-100% degeneration within 2 weeks of onset
Electrophysiology

Electromyography

- Measure action potentials with volitional movement
- Silence
 - Resting state
 - Muscle atrophy or fibrosis
 - Early acute paralysis
- Diphasic or triphasic with normal contraction
- Fibrillation indicates degeneration
- Polyphasic indicates reinnervation
Electrophysiology

Electromyography

- Quantitative analysis, observer independent
- Complementary test with ENoG
 - Regenerating nerve fibers do not complete a summation potential on ENoG
 - Degeneration if myogenic fibrillation potentials but no voluntary motor units on EMG
 - Regeneration if both defibrillation potentials and motor units on EMG
- No fibrillation potentials until 10-14 days after onset
- Unable to distinguish between total neuropraxic injury and regenerating nerve in acute phase
Treatment

- Observation
 - Monitor progression
 - Eye care

- Medical
 - Steroids
 - Antivirals

- Surgical decompression
Treatment

Steroids Beneficial

- Typically start prednisone 1mg/kg/d up to 70-80mg
 - Usually taper after 5-7 days
 - May extend therapy if no improvement

- **Some benefit with steroids** (Adour 1972; Katusic 1986)
 - If combined with antivirals (de Almeida 2009)
 - Optimal effect with early intervention (Brown 1982; Williamson 1996)
 - Prednisolone within 24 hours (Shafshak 1994)

- **Prednisone** (Austin 1993)
 - Randomized, double-blind, placebo-controlled
 - Improved recovery with prednisone
 - Statistically insignificant trend for denervation prevention
Ramsey (2000)
- Meta-analysis of 27 prospective and 20 retrospective trials
 - Three met inclusion criteria (1975-1994)
 - Prospective, controlled trials
 - Prednisone (≥400mg) started within 7 days of onset
 - Steroids improved complete recovery by 17%
- Generally positive benefit from excluded trials
 - Complete recovery 49-97% with steroids
 - Complete recovery 23-64% without

Cochrane Review: steroids increase frequency of complete recovery (Salinas, 2010)
Treatment

Steroids **Not** Beneficial

- No evidence of benefit (May 1976; Stankiewitz 1987)
- Literature review (Grogan 2001)
 - Nine studies compared steroids to placebo (1954-1999)
 - No difference in recovery or synkinesis
 - Most studies underpowered
 - Beneficial trend in some studies
 - *Probable* benefit with steroids
Treatment

Steroids **Not Beneficial**

- No benefit in children (Prescott 1987)
- Pediatric literature review (Salman 2001)
 - Eight trials and one review (1966-1998)
 - Five randomized
 - Prednisone or corticotropin
 - Only one exclusively studied children
 - Benefit reported in four trials
 - No statistical sub-analysis in all trials
 - Heterogeneity precluded meta-analysis or recommendation
Treatment
Antivirals

- Prednisone & acyclovir (Adour 1996)
 - Double-blind with prednisone and acyclovir or placebo
 - Therapy within 3 days of onset
 - Prednisone & acyclovir
 - Less facial weakness on MST
 - Less unsatisfactory recovery

- Prednisone alone better than acyclovir alone (De Diego 1998)

- Literature review (Grogan 2001)
 - Acyclovir vs prednisone; acyclovir & prednisone vs prednisone
 - Lack of studies to establish benefit
 - Possible benefit with adding acyclovir to prednisone
Treatment

Antivirals

- Prednisone & valacyclovir vs no treatment \((Axelsson\ 2003)\)
 - Improved complete recovery (87.5% vs 68%)
 - Less House-Brackmann IV or worse (1.8% vs 18%)
 - Complete recovery in >60 years (100% vs 42%)

- Prednisolone & valacyclovir vs placebo \((Hato\ 2007)\)
 - Prospective, randomized placebo-controlled
 - Six academic tertiary care centers
 - 222 patients
 - Improved recovery rate with valacyclovir (96.5% vs 89.7%)

- Cochrane Review \((Lockhart\ 2009)\)
 - Antivirals plus steroids beneficial over placebo alone
 - Antivirals alone not beneficial over steroids or placebo alone
Treatment

Surgical

- First described in 1932 by Balance & Duel
 - Stylomastoid foramen in 1930’s
 - Tympanic segment in 1960’s
- Decompression beneficial
 [Giancarlo 1970]
- No benefit with decompression from geniculate ganglion to stylomastoid foramen
 [McNeill 1974]
- Transmastoid
 - Decompression may be beneficial
 [May 1979]
 - From geniculate to labyrinthine segment
 - Meatal foramen was not decompressed
 - No benefit from transmastoid approach within 14 days
 [May 1984]
 - No benefit with decompressing mastoid segment alone
 [May 1985]
Treatment

Surgical

- Fisch (1972)
 - Total nerve decompression via middle cranial fossa and transmastoid approach
 - Conduction block proximal to geniculate ganglion

- ENoG with 90% degeneration
 - Decompress meatal foramen within 3 weeks (Fisch 1981)
 - Decompression within 2 weeks (Gantz 1999)
 - Steroids if ENoG with <90% degeneration, no antivirals
 - Decompress if ENoG with >90% degeneration & no EMG activity by 2 weeks
Treatment

Surgical (Gantz 1999)

- Multicenter study, surgery vs steroids
- Middle cranial fossa
 - Decompress internal auditory canal through tympanic segment
 - Surgical control if decompress *after* 2 weeks of paralysis
- Improved outcomes if decompress within 2 weeks
 - House-Brackmann recovery I/II (91% vs 42% steroids) by 7 months
 - House-Brackmann recovery III/IV (9% vs 58% steroids) by 7 months
 - Similar results between surgical control and steroid groups
- House-Brackmann recovery I/II in all with ENoG <90% degeneration
Treatment Algorithm

Acute paresis

- Days 0–14: Prednisone + valacyclovir
 - Follow-up 5 days
 - Paresis: Follow-up 1 month
 - Paralysis: ENoG Follow paralysis protocol

- Days >14: Observation follow-up 6 months

Acute paralysis

- Days 0–3: Prednisone + Valacyclovir
 - Follow-up 3 days
 - <90% Degeneration: Prednisone + valacyclovir
 - Follow-up depends on ENoG up to 14 days
 - >90% Degeneration: Recommend MCF decompression

- Days 3–14

- Days >14: Follow-up 6 months

Prednisone = 1 mg/kg x 7 days, Valacyclovir = 500 mg tid x 10 days

(Brackmann 2010)
Conclusion

- Most common diagnosis of facial paralysis
- Diagnosis of exclusion
- Prognostic information with electrophysiology
- Medical therapy
 - Steroids
 - Antivirals
- Surgical decompression
 - ENoG with >90% degeneration
 - No voluntary EMG activity within 14 days of paralysis
References

References

