Cerebrospinal Fluid Rhinorrhea and Otorrhea

Russell D. Briggs, M.D.
Faculty Advisor: Matthew Ryan, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
October 2, 2002
Introduction

- Cerebrospinal fluid rhinorrhea/otorrhea
 - Abnormal communication between the subarachnoid space and nose/temporal bone
- Complications high
 - Meningitis/brain abscess
- Challenge for diagnosis and treatment
- Important for otolaryngologists
CSF Rhinorrhea

- Connection of SA space to nose/sinuses
- Diverse etiologies
 - Iatrogenic– ESS
 - Blunt trauma– CHI or skull fractures
 - Increased intraventricular pressure
 - Tumors, post infectious/traumatic hydrocephalus
 - Arachnoid granulations
CSF Rhinorrhea

- History and PE
- Unilateral watery rhinorrhea
- Increases with valsalva and posture
- May see leak/encephalocele with endoscope
- Collect fluid
CSF Rhinorrhea

- Ensure it a CSF leak
- Testing of secretions
 - Beta-2-transferrin – highly specific
 - Glucose/protein determination
 - Electronic nose
CSF Rhinorrhea

- Most important step– identify the site
- High resolution CT of sinuses (1mm)
 - Coronal good for anterior skull base
 - Axial good for posterior wall frontal sinus
 - Problem is volume averaging
 - Look in cribiform niche and lateral wall of sphenoid sinus
High resolution CT
High Resolution CT
CT Cisternogram

- Optimal imaging technique
- False negative if no active leak
- Obtain if HRCT fails to show the defect
Magnetic Resonance Imaging

- MR cisternography—misnomer as no intrathecal contrast
- Poor bony detail
 - Uses highly T2 weighted images
- New method with intrathecal gad
- Encephaloceles
Radioisotope cisternography

- Many false positives and negatives
 - Fallen out of favor
- No anatomic detail
- For selected cases when leak not identified
 - Cottonoids in MM, SE recess
 - Removed in 24 hours and tested
 - If positive—intrathecal fluorescein
Intrathecal Fluorescein

- IF leak not identified and strong suspicion
- Combined with endoscopic surgical approach
- Complications
- Topical use
Treatment of CSF Rhinorrhea

- Most resolve (after trauma/surgery)
- Bed rest, head elevation, stool softeners
- Possible lumbar drain/spinal taps
- Prophylactic antibiotics
- Surgical repair
 - Extensive intracranial injury
 - Intraoperative identification
 - Do not respond to conservative measures
Surgical Treatment

- Intracranial
 - Time tested
 - Allows direct visualization
 - Well vascularized flaps
 - Success about 75%
 - High morbidity (anosmia, edema, hemorrhage, incision, hospital stay)
Surgical Treatment

- Extracranial
 - Uses facial incisions for direct visualization
 - Success about 80%
 - Morbidity—facial scarring
Surgical Treatment

- Endoscopic intranasal
 - Preferred method of repair
 - Successful 83-94% (average 90%)
 - Different techniques used
 - Overlay vs. Underlay techniques
 - Composite grafts
 - Dependent on size and location of defect
 - Sphenoid sinus
Surgical Techniques
Surgical Techniques

325-4B
Mucosa stripped from turbinate and defect

Middle turbinate rotated to cover the defect

Complete ethmoidectomy
Surgical Techniques

- Use gelfoam and gelfilm (>90%)
- Use nasal packing (100%)
- Consider fibrin glue (>50%)
- Consider lumbar drain
 - 3-5 days
 - Not required
- BR, stool softeners, antibiotics
CSF Otorrhea

- Connection of SA space and TB
- Acquired etiology is most common
 - Trauma (temporal bone fracture), post-operative, infections, neoplasms
- Congenital etiologies
 - Mondini deformities, wide CA, patent Hyrtl’s fissure, wide fallopian canal
 - Arachnoid granulations (“Spontaneous”)

20
Temporal Bone Fractures

- Most common cause of CSF otorrhea
- Longitudinal vs. Transverse
- CSF from ear or nasopharynx
- HRCT
- Send fluid for beta-2-transferrin
- Bed rest, head elevation, stool softeners, occ lumbar drain, sterile cotton, antibiotics (no drops)
Temporal bone fractures

- Brodie and Thompson (1997)
 - Review of 820 TB fractures
 - 122 with CSF leak
 - 95 closed in first week, 21 in second week, only 5 drained over two weeks
 - Seven patients had surgery
 - Check scan and audiogram
 - 9 developed meningitis
 - ?Abx
Spontaneous CSF Otorrhea

- May be subtle
- Two types
 - Preformed bony pathway—present early
 - Meningitis after AOM
 - Resistant MEE—recognized after MT
 - Congenital defect (arachnoid granulations)
 - Villi enlarge, weight of temporal lobe
 - Bone erosion—present over age 50
 - MEE
Spontaneous CSF Otorrhea
Spontaneous CSF Otorrhea
Spontaneous CSF Otorrhea
Spontaneous CSF Otorrhea

- Beta-2-transferrin
- HRCT
- CT cisternogram
- MR cisternogram
- Surgical repair
Surgical Techniques

- Middle fossa defects
 - Middle fossa craniotomy with extradural elevation—avoids ossicular problems
 - Transmastoid

- Posterior fossa defects
 - Transmastoid/fat obliteration of mastoid

- Others
Conclusions

- Get a good history and PE
- Test the fluid (if possible)
- Find the site of the the leak
 - Radiographically
- Treat it surgically if necessary
Case Report

- 45 yobf presents with “headache and my neck hurts”
Case Report

- 45 yobf presents with “headache and my neck hurts”
- Worsening for 2 weeks
- Photophobia, N/V
Case Report

- 45 yobf presents with “headache and my neck hurts”
- Worsening for 2 weeks
- Photophobia, N/V
- PMH: meningitis 6 months prior, AR
- PSH: hysterectomy
- Meds: Flonase— not helping— constant drainage
- SH/FH/ROS: NC
Case Report

- Physical Exam
 - Positive Kernig’s and Brudinski’s
 - Some clear rhinorrhea and hypertrophied turbs bilaterally
 - Sits forward and clear fluid from right nare
 - Otherwise normal H/N exam
Labs: WBC = 20.2 with left shift, remainder essentially OK
Case Report

- Consult to neurology made
- LP—cloudy fluid, many PMN’s
- Streptococcus pneumoniae
- Placed on appropriate abx
- Improving
Case Report
Case Report
Case Report

- Did not respond to conservative measures
- Taken to surgery
- Endoscopically identified leak (3-4mm)
- Three layer repair
- Lumbar drain in for 7 days
- Packing in for 7 days