CSF RHINORRHEA

David Gleinser, MD, PGY-3
Faculty Advisor: Patricia Maeso, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
November 20, 2009
Basic Principle of CSF Rhinorrhea

- CSF rhinorrhea is the result of an osseous defect at the skull base coupled with a disruption of the dura mater and arachnoid with a resultant pressure gradient that leads to a CSF leak.
CSF Basics

- 50-80% produced by choroid plexus
- ~30% produced by ependymal surface

Production
- Result of capillary ultrafiltration
 - Regulated by Na\(^+\)/K\(^+\) ATPase activity
 - Na\(^+\) ions are taken into the epithelial cell from the vessel
 - Another Na\(^+\)/K\(^+\) ATPase on the ventricular side then pushes the Na\(^+\) out into the ventricle
 - Water follows the ions into the ventricle
 - Result is CSF
CSF Basics

- **Consistency**
 - Ions - Na^+, K^+, Mg^{2+}, Ca^{2+}, Cl^-, and HCO_3^-
 - Glucose (roughly 60-80% of blood glucose)
 - Water
 - Amino acids and proteins
 - Very few cells (polymorphonuclear and mononuclear cells)

- **Amount**
 - ~90-150mL of CSF at any one time
 - 20mL/hr is the normal production rate
 - 500mL/day produced
Etiology - Trauma

- Most common area - anterior cranial fossa (cribiform and roof of ethmoid)
- Non-surgical Trauma
 - ~80% of all CSF leaks result of blunt or penetrating head trauma
 - 2-3% of major head trauma results in CSF leaks
 - CSF leak in 15-30% of cases of skull base fracture
 - Leak may be either immediate (within 48 hours) or delayed
 - ~95% of cases of delayed leaks occur within 3 months
Etiology - Trauma

- Iatrogenic
 - 16% of CSF leaks
 - Endoscopic sinus surgery most common cause
 - 0.5% of ESS cases
 - Most common site of injury - lateral cribiform lamella
Etiology – Non-traumatic

- 4% of cases of CSF rhinorrhea
- **High Pressure Leaks**
 - 45% of non-traumatic cases
 - Sustained increased ICP -> Remodeling and thinning of the skull base -> Defect
 - Theorized to be due to ischemia from compression of vessels
 - Causes of Increased ICP
 - Tumor growth (typically pituitary tumors)
 - Hydrocephalus
 - Communicating or Obstructive
Etiology – Non-traumatic

- Normal Pressure Leaks
 - 55% of non-traumatic cases

- Causes
 - True Spontaneous leaks
 - Physiologic alterations in CSF pressure lead to point erosions in the skull base that can lead to defects
 - Every few seconds, normal elevations in CSF pressure up to 80 mmH₂O
 - Usually seen in adults
 - Tumors and other osteolytic causes
 - Tumors invade and erode skull base
 - Nasopharyngeal carcinoma, angiofibroma, inverting papilloma, osteomas
 - Other osteolytic lesions
 - Sinusitis
 - Syphilis
 - Mucoceles
Etiology – Congenital

- May have either increased ICP or normal ICP
- Failure of closure of the anterior neuropore -> herniation of meninges (encephaloceles)
 - Typically involves the foramen cecum and fonticulus frontalis
- Persistent craniopharyngeal canal
 - Vertical midline defect connecting the middle cranial fossa to the sphenoid sinus
Encephalocele

Persistent craniopharyngeal canal
Etiology – Congenital

- Empty Sella Syndrome
 - Sella turcica appears empty on imaging
 - Primary type
 - Congenital widening of the diaphragma sella + another event
 - Increased ICP transmitted through widened diaphragm -> causing compression of the pituitary
 - (Pseudotumor cerebri, intracranial tumors, hydrocephalus)
 - Rupture or displacement of cysts through the widened diaphragm causing compression
 - Increased pressure in sella thought to be cause of CSF leak
 - remodeling and thinning with eventual defect formation
Empty Sella Syndrome
Work-up – H&P

- **History**
 - Clear, watery discharge from a single nare
 - Supine positioning -> increased postnasal drip
 - Salty taste in mouth
 - Headaches relieved when CSF begins to drain

- **Physical**
 - Most cases = Exam unremarkable
 - Examine with nasal endoscopy
 - Have patient lean forward and strain – may elicit a leak
 - Compression of both jugular veins may elicit a CSF leak
 - Causes a rise in ICP
 - CSF rhinorrhea is typically clear, but if trauma has occurred, it may be mixed with blood
 - High likelihood of other injuries when trauma is involved (facial fractures, brain injury)
Diagnosis

- Halo or Ring Sign
 - Bloody CSF placed on a piece of filter paper
 - Blood will separate out from the CSF (central blood with clear ring)

- Dula et al found that the ring sign is not specific to bloody CSF
 - Blood mixed with water, saline, and other mucus will also produce a ring sign
Diagnosis – Laboratory Studies

- Glucose testing
 - Not very useful – False findings
 - Presence of blood -> Increased glucose readings (false positive)
 - Presence of meningitis or other intracranial infections -> Lower concentration of glucose in CSF (false negative)
 - Glucose oxidase paper
 - Changes color with glucose concentrations of 5+ mg/dL
 - False-positive results with lacrimal secretions or nasal mucus
 - Both contain enough glucose to cause paper to change color
 - If no blood present, may suspect CSF leak with a glucose concentration > 30mg/dL
 - Negative glucose virtually eliminates a diagnosis of CSF fluid
Diagnosis – Laboratory Studies

- Beta-trace protein
 - Found in CSF, heart, and serum
 - Not routinely ordered as it may be altered in many cases
 - Elevated with renal insufficiency, multiple sclerosis, cerebral infarctions, and some CNS tumors
 - If serum level is < 1.0 mg/L
 - Fluid with a concentration > 2.0 mg/L = Positive for CSF
 - Concentration < 1.5 mg/L = Not likely to contain CSF
 - Sensitivity and specificity not as high as Beta-2-transferrin
 - If test is available, can be accomplished in 15 minutes
 - Not readily available at UTMB
Diagnosis – Laboratory Studies

- **Beta-2-transferrin**
 - Protein produced by enzymes *only in CNS*
 - Test requires 0.5cc of fluid
 - Specimens should be refrigerated
 - If not, protein will become unstable at room temperature within 4 hours
 - If refrigerated, can last 3 days
 - Highly sensitive and specific for CSF
 - If available, can get results within 3 hours
 - Most places require “send-out” to test, so may take days to get results back
Diagnosis - Imaging

- High Resolution CT Scans
 - Bony defects, pneumocephalus, soft tissue masses, hydrocephalus
 - Should have 1mm cuts with axial, sagittal and coronal views

- CT Cisternography
 - Inject intrathecal contrast dye and obtain CT scan
 - More accurate
 - Especially those with active leaks
 - Sensitivity for detecting leaks drops from nearly 100% with active leaks to 60% with intermittent leaks
 - More invasive

- MRI
 - Soft tissue abnormalities and pooling of CSF (high signal intensity on T2 images)
 - Must utilize contrast to differentiate sinus inflammation from CSF fluid
 - More expensive
 - Not as good at defining bony defects
Diagnosis - Imaging

- Nuclear medicine tests (radionuclide cisternography)
 - How it works
 - Intrathecal injection of radioactive tracers (technetium-99, I-131, Indium 111)
 - Pledgets placed at areas suspected of leak and scintigrams of the skull are obtained
 - Pledgets are removed and measured for radioactive tracer
 - Drawbacks
 - Almost always requires an active leak
 - With active leaks detection rate is 70%
 - Inactive leak - 30-40% detection rate
 - Poor localization in most cases
 - Radioactive isotope is absorbed into the circulatory system and deposited into normal tissues
CT & CT Cisternography
Diagnosis – Intrathecal Dye

- Intrathecal injection of Fluorescein dye
 - Good at locating active CSF leaks
 - Inject a solution of 0.5%-10% Fluorescein dye and wait 30 minutes to examine patient
 - Most cases - Dye can be seen without filters
 - Smaller defects may require filters or black light
 - Place yellow filter over endoscope and blue filter over light source
 - Important to keep low concentration of Fluorescein; high doses can lead to severe side effects (500+mg)
 - Seizures
 - Pulmonary edema
 - Coma
 - Death
Fluorescein Dye
Treatment - Basic

- **Conservative vs. Surgical**
 - Traumatic leaks respond well to conservative management
 - Spontaneous leaks tend to require surgical correction

- **Basic Conservative Management**
 - Bed rest
 - 7-10 days
 - Head of bed 15-30 degrees
 - No’s:
 - Nose blowing
 - Straining - stool softeners
 - Coughing
 - Heavy lifting
 - 75-80% of traumatic CSF leaks will spontaneously resolve with this management
Treatment - Antibiotics

- Controversial
- Reason for use = Prevent intracranial infections
- Evidence
 - Brodie et al meta-analysis in 1997
 - 6 studies
 - 324 patients
 - 237 treated with antibiotics
 - 87 not treated with antibiotics
 - Meningitis
 - 2.5% of patients in the antibiotics group (6/237)
 - 10% of no-antibiotic group (9/87)
 - Villalobos et al meta-analysis in 1998
 - 12 studies
 - 1241 patients
 - 719 treated with antibiotics
 - 522 not treated with antibiotics
 - 1.34x more likely to develop meningitis without the use of antibiotics in cases of CSF leak from basilar skull fracture
- Risk of selecting out more virulent bacterial strains with use
Treatment - Diuretics

- Utilized in the presence of CSF leak with increased ICP
- Acetazolamide
 - Inhibits the conversion of water and CO$_2$ to bicarbonate and H$^+$
 - Loss of H$^+$ slows the action of the Na$^+$/K$^+$ ATPase enzymes that are responsible for the production of CSF -> Decreased ICP
Treatment – Lumbar Drain

- Consider if CSF leak does not resolve after 5-7 days of conservative management
- Continuous drainage is recommended over intermittent drainage
 - Prevents spikes in CSF pressure
- 10-15cc/hr
- Risks:
 - Headaches
 - Nausea and emesis
 - Pneumocephalus
 - Infection
 - Coma
Treatment - Surgical

- Intracranial Approach
 - When to use:
 - Comminuted skull fractures with displaced fragments requiring reduction
 - Extensive skull base fractures
 - Fractures associated with intracranial hemorrhages or contusions that require craniotomy for treatment
 - Dural defects may be closed primarily with or without the use of grafts
 - Free or pedicled periosteal or dural flaps
 - Muscle plugs
 - Mobilized portions of the falx cerebri
 - Fascia grafts
 - Many commercial grafts
 - Reinforce grafts with fibrin glue
Intracranial Approach – Advantages/Disadvantages

- **Advantages**
 - Direct visualization of defect
 - Inspection of adjacent cerebral cortex
 - Better chance of patching a defect in the face of increased ICP

- **Disadvantages**
 - Increased morbidity
 - Increased hospital time
 - Injury to brain from retraction (hematoma, seizures, cognitive dysfunction, risk of permanent anosmia)
 - Not good for visualization of sphenoid sinus
Treatment - Surgical

- Extracranial Approach
 - Most often endoscopic -> Success rates of 90+%
 - Advantages of endoscopic use
 - Better magnified visualization
 - Angled visualization
 - No external incisions
 - Minimizes intranasal mucosal injuries
Treatment - Surgical

- Endoscopic Repair
 - Good visualization and exposure = key
 - If an encephalocele is present
 - Cauterize stalk prior to reduction - prevents intracranial hemorrhage
 - 2-5mm of bone should be exposed around the defect
 - Grafts - 30% larger than the defect to account for shrinkage
 - Type of grafting material
 - Cartilage
 - Bone (septum, mastoid tip, middle turbinate)
 - Mucoperichondrium
 - Septal mucosa
 - Turbinate mucosa and/or bone
 - Fascia (temporalis, fascia lata)
 - Abdominal fat
 - Pedicled septal or turbinate flaps
 - Tend to tent, fold and contract, so not as good as free tissue use
Treatment - Surgical

- Grafting techniques
 - Important: All mucosa must be removed from the defect to ensure that a mucocele does not form
 - Overlay
 - Place graft directly over defect
 - Underlay
 - Place graft between dura and bony defect
 - Combined
 - Both underlay and overlay grafts
 - Fibrin glue -> provides improved seal
 - Gelfoam packing over the seal with or without nasal packing may further improve seal
 - Increased ICP -> Use multilayered grafting
Repair Based on Defect Size

- **Size of defect**
 - < 2mm – Almost any grafting technique is successful
 - 2-5mm – Can typically get away with just utilizing an overlay graft
 - Communited bone segments or significant dural injury
 - Composite graft
 - Separately harvested bone + mucosa
 - Bone placed in an underlay fashion
 - Mucosa placed in an overlay fashion
 - >5mm – Composite or separate bone+ mucosa grafts needed
Post-Operative Management

- Bed rest with HOB 15-30 degrees for 3-5 days
- Stool softeners
- Try to maintain normal BP
- No straining, coughing, heavy lifting
- If lumbar drain is utilized – 3-5 days in place
- Non-absorbable packing utilized - antibiotics
Sources