CSF Leaks

Steven Wright, M.D.
Faculty Advisor: Matthew Ryan, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
January 5, 2005
CSF Leaks

- Abnormal communication between the subarachnoid space and the tympanomastoid space or nasal cavity.

- Presenting symptoms:
 - Middle ear effusion, hearing loss
 - Unilateral rhinorrhea

- Risk of meningitis is high
 - 2-88%
CSF Rhinorrhea

- Diverse etiology
 - Idiopathic
 - Trauma-Surgical
 - <1%
 - Trauma-Nonsurgical
 - 3% of all closed head injuries
 - 30% of skull base fractures
 - Frontal > Ethmoids > Sphenoids
 - Inflammatory
 - Congenital
 - Neoplasm
Testing of Nasal Secretions

- Beta-2-transferrin is highly sensitive and specific
 - 1/50th of a drop
- Electronic nose has shown early success
Imaging

- High resolution CT
- CT Cisternography
- MRI
 - Heavily weighted T2
 - Slow flow MRI
 - MRI cisternography
- Radionuclide cisternography
- Intrathecal flourescin
Imaging

- HRCT
 - Volume averaging
 - Congenital dehiscences of Spenoid/cribiform niche.
Imaging

- **CT cisternography**
 - Currently the optimal imaging modality (85% sensitive)
 - Intrathecal administration of iodine, prone 6hrs
 - 0% for inactive leaks
 - Substantial radiation exposure
 - ?neurotoxic potential
Imaging

- MRI cisternography
 - heavily weighted T2
- Intrathecal gadolinium
Imaging

- Slow flow MRI
- Diffusion weighted MRI
- Fluid motion down to 0.5mm/sec
- Ex. MRA/MRV
Imaging

- Radioisotope cisternography
 - Intrathecal administration of technitium 99m
 - Less spatial resolution and specificity
 - Largely abandoned due to false positive and false negative results
Intrathecal Flourescin

- 0.1ml of 10% flourescin solution mixed in 10cc of CSF
- Blue light may enhance the flourescin
- Complications are low
Treatment of CSF Rhinorrhea

- **Conservative measures**
 - Bed rest/Elev HOB>30
 - Stool softeners
 - No sneezing/coughing
 - +/- lumbar drains

- **Early failures**
 - Assoc with hydrocephalus
 - Recurrent or persistent leaks
Treatment of CSF Rhinorrhea

- Prophylactic antibiotics:
 - Two conflicting meta-analysis regarding basilar skull fractures.
 - Proponents argue less meningitis.
 - Opponents argue organism resistance.
Surgical Options

- Intracranial
 - Direct visualization
 - Success rates 50-73%
 - Significant morbidity
 - Anosmia
 - Cerebral edema
 - Seizures
Surgical Options

- Extracranial approach
 - Improved success rates (80%)
 - Significant morbidity
 - Frontal osteoplastic flap/infratemporal approach
Endoscopic repair

- Endoscopic intranasal repair
 - Overall success rates:
 - 90% 1st attempt
 - 52-67% for 2nd attempt
 - Overall 97%
 - Complications:
 - Meningitis (0.3%)
 - Brain abscess (0.9%)
 - Subdural hematoma (0.3%)
 - Headache (0.3%)
Endoscopic techniques

325-4B
Mucosa stripped from turbinate and defect

325-4C
Middle turbinate rotated to cover the defect

Complete ethmoidectomy

CSF leak
Overlay vs Underlay technique

- Meta-analysis showed that both techniques have similar success rates
- Onlay: adjacent structures at risk, or if the underlay is not possible
Surgical Techniques

- Use gelfoam and gelfilm (>90%)
- Use nasal packing (100%)
- Consider fibrin glue (>50%)
- Consider lumbar drain for idiopathic/posttraumatic assoc with increased ICP
 - 3-5 days
 - Not required
- BR, stool softeners, antibiotics
CSF Otorrhea

- **Acquired**
 - Postoperative (58%)
 - Trauma (32%)
 - Nontraumatic (11%)

- **Spontaneous**
 - Bony defect theory
 - Arachnoid granulation theory
Temporal bone fractures

- Longitudinal
 - 70%
 - Anterior to otic capsule
 - 15-20% facial nerve involvement
Temporal bone fractures

- Transverse
 - 20%
 - High rate of SNHL
 - 50% facial nerve involvement
Temporal bone fractures

- HRCT will demonstrate the fracture line and the likely site of CSF leak.
- Beta-2-transferrin

Treatment
- Bedrest
- Elev HOB
- Stool softeners
- +/- lumbar drain
Temporal bone fractures

- Brodie and Thompson et al.
- 820 T-bone fractures/122 CSF leaks
- Spontaneous resolution
 - 95/122: within 7 days
 - 21/122: between 7-14 days
 - 5/122: Persisted beyond 2 weeks
Temporal bone fractures

- Meningitis
 - 9/121 (7%) developed meningitis.

- A later meta-analysis by the same author did reveal a statistically significant reduction in the incidence of meningitis with the use of prophylactic antibiotics.
Pediatric temporal bone fractures

- Much lower incidence (10:1, adult:pedi)
 - Undeveloped sinuses, skull flexibility
- Otorrhea >> rhinorrhea
- Prophylactic antibiotics did not influence the development of meningitis.
Spontaneous CSF otorrhea

- **Congenital Defect Theory:**
 1) enlarged petrosal fallopian canal
 2) patent tympanomeningeal (Hyrtl’s) fissure
 3) Communicaiton of the IAC with the vestibule (Mondini’s dysplasia)-most common

- **Childhood presentation**
 82% SNHL
 93% Meningitis
 83% Mondini Dysplasia
Congenital bony defect
Spontaneous CSF otorrhea

Arachnoid granulation theory
- Enlargement of arachnoid villi due to congenital entrapments/pressure variations

Presentation
- Unilateral serous otitis media
- Meningitis (36%)
- No SNHL or Mondini dysplasia
- Sites are multiple, floor of the middle fossa most common
Arachnoid Granulation
Spontaneous CSF otorrhea

- Stone et al.

- HRCT vs. CT cisternography/radionuclide cisternography.
 - HRCT showed bony defects in 71%.
 - 100% intraoperative findings correlated with HRCT.
 - HRCT significantly identified more patients with CSF leak than radionuclide cisternography or CT cisternography.
Surgical approaches

- Transmastoid
 - Not ideal for large defects (>2cm), multiple defects, or defects that extend anteriorly

- Middle cranial fossa
 - Technically challenging
 - Best exposure

- Combined approach
Technique of closure

- Muscle, fascia, fat, bone wax, etc..

- The success rate is significantly higher for those patients who undergo primary closure with a multi-layer technique versus those patients who only get single-layer closure.

- Refractory cases may require closure of the EAC and obliteration.
Conclusions

- The clinical presentations of CSF leaks may be very subtle.
- The clinician must keep a low threshold for further testing with Beta-2-Transferrin.
- Imaging studies should be performed to anatomically localize the site.
- Success rates may be over 90% with proper patient and surgical selection.