Conservation Laryngeal Surgery

Frederick S. Rosen, MD
Faculty Advisor: Byron J. Bailey, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
May 28, 2003
Introduction

- Definition: Maintains physiologic speech and swallow without need for tracheostoma
- Goal: Preserve function without compromising cure rate
- 4 basic functions of larynx
 - Deglutition
 - Respiration
 - Phonation
 - Airway protection
Introduction

• Four Basic Principles
 – Must know extent of tumor
 – Cricoarytenoid unit is basic functional unit of larynx
 – Resection of normal tissue is necessary
 – Must consent patient for total laryngectomy
Anatomy

• Lymphatic drainage sparse anteriorly and at glottis
• Rich lymphatics in supraglottis, subglottis, posterior half
• Barriers to spread
 – Conus Elasticus inferiorly
 – Quadrangular Membrane laterally
 – Thyrohyoid Membrane superiorly
Anatomy

Foramen for superior laryngeal vessels and int. laryngeal m.

Epiglottis

Quadrangular membrane

Thyroepiglottic ligament

Vestibular ligament

Vocal ligament

Conus elasticus

Arytenoid

Cricoid

Thyroid cartilage
Anatomy

• Broyles’ Tendon: Weak area
• Cricoarytenoid Unit=Arytenoid cartilage + Cricoid cartilage + Musculature + SLN + RLN
Pathophysiology

- Limitation of TVC mobility implies worse prognosis
- Early glottic carcinoma
 - 25% to anterior Commissure
 - 1/5 5mm or more below TVCs
 - 1/5 to supraglottis
 - T1 and T2: 5% incidence of cervical metastasis, always to ipsilateral neck
 - Skip lesions rare
Pathophysiology

• Supraglottic SCCA
 – Higher incidence of cervical metastasis
 – 19% develop second respiratory tract primary within 5 years
 – Epiglottic cancer tends to involve preepiglottic space; usually involves broad front with pseudocapsule
 – Suprahyoid epiglottis: Cervical mets and preepiglottic involvement rare
Pathophysiology
Endoscopic Management of Glottic Lesions

- **Treatment options:** Open conservation surgery, XRT, microendoscopic CO2 laser excision
- **Local Control**
 - T1a: 94%
 - T1b: 71%
 - T2: 83%
- **Favor laser:** Tumor bulk, P-53 overexpression
- **Do not favor laser:** Previous XRT
Endoscopic Management of Glottic Lesions

• Use of CO2 laser introduced in 1972

• Preoperative workup:
 Flexible laryngoscopy and videostroboscopy
 – Must assess for presence of mucosal wave
Endoscopic Management of Glottic Lesions

- Excise with solitary laser bursts
- Orient specimen and send for frozen section
- Extend resection if margins positive
- “Safe” margin = 2-5 mm
- Only appropriate when close follow-up possible and adjuvant therapy available
Endoscopic Management of Glottic Lesions

• Exclusion criteria:
 – Deep involvement at AC
 – Vocal process involvement
 – Ventricle involvement (debated)
 – Subglottic extension (debated)
 – Impaired TVC mobility (debated): University of Utah
 91% 5-year survival with technique of “uncapping” paraglottic space
Endoscopic Management of Glottic Lesions

- Complications (Moreau, n=124)
 - Granuloma formation at AC (most common) – spontaneous resolution after months
 - Laryngeal hemorrhage
 - Pneumothorax
 - Aspiration pneumonia
 - Subcutaneous air
 - Prelaryngeal abscess
 - Anterior webs
Table I.
Endoscopic Cordectomy: Classification by European Laryngological Society.

<table>
<thead>
<tr>
<th>Subepithelial cordectomy</th>
<th>Type I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subligamental cordectomy</td>
<td>Type II</td>
</tr>
<tr>
<td>Transmucosal cordectomy</td>
<td>Type III</td>
</tr>
<tr>
<td>Total or complete cordectomy</td>
<td>Type IV</td>
</tr>
<tr>
<td>Extended cordectomy encompassing the controlateral vocal fold</td>
<td>Type Va</td>
</tr>
<tr>
<td>Extended cordectomy encompassing the arytenoid</td>
<td>Type Vb</td>
</tr>
<tr>
<td>Extended cordectomy encompassing the ventricular fold</td>
<td>Type Vc</td>
</tr>
<tr>
<td>Extended cordectomy encompassing the subglottis</td>
<td>Type Vd</td>
</tr>
</tbody>
</table>
Endoscopic Management of Glottic Lesions
Endoscopic Management of Glottic Lesions

<table>
<thead>
<tr>
<th>T Stage</th>
<th>Type of Cordectomy</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tis</td>
<td>Type I</td>
<td>Depending on the extension of the involved area and the results of preoperative investigation (i.e., videoendoscopy)</td>
</tr>
<tr>
<td></td>
<td>Type II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type III</td>
<td></td>
</tr>
<tr>
<td>T1a</td>
<td>Type III</td>
<td>Small superficial tumor involving the middle third of true vocal fold (Ø 0.5–0.7 mm)</td>
</tr>
<tr>
<td>T1a</td>
<td>Type IV</td>
<td>Tumor size > 0.7 mm and/or deep infiltrative pattern and/or extension to the anterior commissure</td>
</tr>
<tr>
<td>T1b</td>
<td>Type Va</td>
<td>Involvement of the anterior commissure or horseshoe lesions</td>
</tr>
<tr>
<td></td>
<td>Bilateral cordectomy</td>
<td>Multifocal cancer</td>
</tr>
</tbody>
</table>
Endoscopic Management of Glottic Lesions

• Greater than Type III cordectomy should be observed overnight; otherwise, DSU appropriate

• Microdebrider
 – Use tissue trap
 – Advantages: Improved access to AC and subglottis, eliminates thermal injury
 – Disadvantages: No margin control, cannot orient specimen
 – “Debulking” for exposure or to avoid trach prior to excision with margin control
Endoscopic Management of Glottic Lesions
Endoscopic Management of Supraglottic Lesions

• Some form of supraglottic laryngectomy *always* favored in supraglottic SCCA unless
 – Precluded by patient factors
 – Involvement at glottic level
 – Invasion of cricoid or thyroid cartilage
 – Tongue base involvement within 1 cm of circumvallate papillae
Endoscopic Management of Supraglottic Lesions

- Must optimize exposure
- Boyce-Jackson position optimal: Extension at occipitoatlantic joint, flexion of neck on chest
Endoscopic Management of Supraglottic Lesions

- Lesions amenable to resection lie perpendicular to distal lumen of supraglottoscope
 - Suprahyoid epiglottis
 - Aryepiglottic fold
 - False vocal fold

- Clear margins usually obtained at time of laser excision because of pseudocapsule

- Complete excision of primary before XRT yields 20-35% tx advantage over XRT alone
Endoscopic Management of Supraglottic Lesions

- Complications rare
- Patients with normal preoperative swallow do not have permanent deficits
- Laryngeal protection relatively good with laser
 - SLN not disturbed proximal to larynx
 - Laryngeal elevation not impaired
 - Healing results in favorable scarring with new supraglottic valve
Endoscopic Management of Supraglottic Lesions

- Poor candidates for open supraglottic laryngectomy still generally good candidates for laser
- Typically requires 1-3 day hospitalization post-op
- Open supraglottic laryngectomy remains standard surgical management for early supraglottic SCCA
Vertical Partial Laryngectomy

• Contraindications to VPL:
 – Fixed TVC
 – Involvement of PC
 – Bilateral arytenoid invasion
 – Bulky transglottic lesion
 – Thyroid cartilage invasion
 – >15 mm subglottic extension anteriorly; >5 mm posteriorly
 – Lesions extending beyond free edge of FVC superiorly
Vertical Partial Laryngectomy

- Aging and COPD increase risk of postoperative atelectasis/pneumonia
- PFTs controversial
 - $\text{FEV}_1 < 50\text{-}60\%$ of expected for age predicts high risk of pulmonary complications
 - Ability to walk up 2 flights of stairs better predictor of post-op complications than PFTs
- Chronic cough, purulent sputum predictors
Vertical Partial Laryngectomy

- Tracheotomy required
- Avoid injury to SLNs
- Examine subglottic area via incision in cricothyroid membrane
- Reconstructive options with intact thyroid lamina: Skin graft, buccal mucosa, FVC advancement
Vertical Partial Laryngectomy

- Reconstructive options with ipsilateral thyroid lamina removed: Composite septal cartilage/perichondrial free graft, inferiorly and laterally rotated epiglottis
- Most popular reconstructive option in either case = Bipedicled strap muscle flap
 - Preserved external perichondrium used to line laryngeal lumen
 - Should anticipate 30% muscle atrophy
Vertical Partial Laryngectomy

- Resection specimen to include lower ½ of FVC and all of TVC (including arytenoid as needed)
- May be extended to include entire endolarynx except for single cricoarytenoid unit and PC
- Keel must be placed at anterior commissure if both sides of endolarynx involved
- Central segment of thyroid cartilage may be removed if AC involved
Vertical Partial Laryngectomy

- Reconstructive options for AC: Advancement of epiglottic petiole, bilateral omohyoid muscle flaps
Vertical Partial Laryngectomy
Vertical Partial Laryngectomy

A
- Pharynx
- Arytenoids
- Thyroid cartilage
- Thyrohyoid m.
- Omohyoid m.
- Sternohyoid m.
- Tumor
- Incision
- Laryngeal ventricle

B
- Omohyoid m.
- Perichondrium

C
- Bilateral omohyoid muscle flaps
Vertical Partial Laryngectomy
Vertical Partial Laryngectomy

- **Imbrication**
 Laryngectomy: Overlapping of cut thyroid ala with approximation of endolaryngeal mucosa
Vertical Partial Laryngectomy

• Decannulation at 1-2 weeks post-op
• Functional phonation by 4 weeks post-op
• Indications: T1 and T2 glottic lesions
• Local control 89-100%; worse when AC involved
• Most common recurrence site with AC involvement is subglottis
• VPL and XRT outcomes same except VPL better for T2b lesions (73-90% vs. 64-76%)
Vertical Partial Laryngectomy

- Factors favoring VPL over XRT
 - T1 lesions extending to AC
 - Obese patients
 - Radioresistant tumors (e.g., verrucous)
 - Salivary gland malignancies
 - Benign laryngeal tumors
 - Unreliable follow-up
 - Young patients
 - Neck nodes >2 cm in size
Vertical Partial Laryngectomy

- VPL following XRT
 - Lesion must be limited to 1 TVC
 - Body of arytenoid free of tumor
 - Subglottic extension <5-10 mm
 - Entire area of pre-XRT tumor involvement must be encompassed by resection
 - Lesion must extend no higher than lateral wall of ventricle
Vertical Partial Laryngectomy

• Early Complications generally tracheostomy related
 – Infection
 – Aspiration and dysphonia (should not persist for > 3 weeks)

• Late Complications
 – Aspiration (Injection laryngoplasty at 6-8 weeks
 – Chondritis
 – Laryngeal stenosis (Must rule out local recurrence)
 – Severe hoarseness
 – Granulation tissue (CO2 laser and keel)
 – Tumor recurrence
Voice

• Ultimate voice preservation better following conservation laryngeal surgery than primary XRT (97% vs. 90%)

• Presence of even minimal mucosal wave pre-op predicts good voice post-op

• Key factors in maximizing voice:
 – Limiting amount of mucosa resected
 – Maintaining straight vocal fold edge
 – Preserving vocal ligament
Voice

• Voice following XRT: Most pt’s pleased, voice tends to improve gradually, but voice not perfect

• Voice following laser: Immediate post-op voice breathy and rough, mucosal wave preserved in 1/3

• Voice following VPL: Most experience incomplete glottic closure and supraglottic hyperfunction; post-op voice highly unpredictable; tends to be rough, breathy, and strained
Voice

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>Posttreatment Evaluation</th>
<th>XRT Dose</th>
<th>Amount of Vocal Fold Resected</th>
<th>Voice Analysis</th>
<th>Drawbacks</th>
<th>Voice Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGuirt et al.</td>
<td>24</td>
<td>>6 mo</td>
<td>6600 cGy</td>
<td>≦ half of cordal mass</td>
<td>acoustic + subjective</td>
<td>—</td>
<td>no difference</td>
</tr>
<tr>
<td>Hirano et al.</td>
<td>31</td>
<td>>3 mo</td>
<td>6000 cGy</td>
<td>≦ half of cordal mass in 88% of patients</td>
<td>acoustic subjective</td>
<td>almost 50% of surgical group had XRT postoperatively no statistical analysis</td>
<td>no difference</td>
</tr>
<tr>
<td>Cragle & Brandenburg</td>
<td>34</td>
<td>>5 mo</td>
<td>6600 cGy</td>
<td>unknown</td>
<td>acoustic</td>
<td>XRT postoperatively no statistical analysis no difference</td>
<td>no difference</td>
</tr>
<tr>
<td>Epstein et al.</td>
<td>77</td>
<td>not stated</td>
<td>6600 cGy</td>
<td>unknown</td>
<td>subjective/ chart review</td>
<td>65% of cordecomy group had more than one surgery speech therapy in XRT better</td>
<td></td>
</tr>
<tr>
<td>Rydell et al.</td>
<td>36</td>
<td>3 mo and 2 y</td>
<td>6400 cGy</td>
<td>unknown</td>
<td>acoustic + subjective</td>
<td>XRT postoperatively only 38% of cordecomy patients</td>
<td>XRT better</td>
</tr>
</tbody>
</table>
Discussion

- Open conservation laryngeal surgery recurrence rate: 5% for early glottic CA
- XRT recurrence rate: 10% for T1 to 30% for T2b
- Treatment of recurrence following XRT frequently involves TL
- Treatment of recurrence following laser: many options, TL rarely required
- Other advantages of laser: Decreased cost, decreased morbidity
Discussion

• Advantages of XRT: Superior voice, no in-house stay, no surgical complications

• Major problem with supraglottic SCCA = cervical metastasis
 – Open SGL: Possible to tx both primary and necks with single modality
 – Ideal laser patient: Lesion limited to suprahypoid epiglottis with N0 necks
References

- References