Genetic Hearing Loss

Jing Shen M.D.
Faculty Advisor: Ronald Deskin M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
March 2004
Epidemiology

- Hearing loss occurs in 1 out of every 1,000 births
- 50% are hereditary
- Syndromic vs. nonsyndromic
 - 30% syndromic
 - 70% nonsyndromic
- Autosomal dominant vs. autosomal recessive vs. x-linked vs. mitochondrion
Methods

- Linkage mapping
- Mouse model
- Difficulties:
 - Families too small for linkage analysis
 - Assortive mating introducing various genes into one single pedigree
 - Incomplete penetrance
Syndromic deafness

- Has other abnormalities
- About 20-30% of genetic hearing loss
- Two syndromes can be caused by different mutations of the same gene
- Mutations of more than one gene can cause the same clinical phenotype
Alport syndrome

- At least 1% of congenital hearing loss
- X-linked inheritance (80%), autosomal recessive as well as dominant
- Sensorineural hearing loss: mostly affect high tone
- Renal dysfunction
 - Microscopic hematuria
 - Man are more severely affected than woman
 - Onset in early childhood and progress to renal failure in adulthood
 - Increased risk of developing anti-GBM nephritis after renal transplantation
Alport syndrome

- Ocular abnormalities
 - Lenticulus
 - Retina flecks
- Defective collagen type 4 causes abnormalities in the basement membrane
- 3 genes: \textit{COL4A5}, \textit{COL4A3}, \textit{COL4A4}
- These collagens found in the basilar membrane, parts of the spiral ligament, and stria vascularis
- Exact mechanism of hearing loss is unknown
Branchio-oto-renal syndrome

- 2% of profoundly deaf children
- Autosomal dominant disorder
- Otologic anomalies:
 - variable hearing loss (sensorineural, conductive or mixed)
 - malformed pinna, preauricular pits
- Branchial derived abnormalities: cyst, cleft, fistula
- Renal malformation: renal dysplasia with anomalies of the collecting system, renal agenesis
- Sometimes with lacrimal duct abnormalities: aplasia, stenosis
- $EYA1$ gene mutation – knockout-mice showed no ears and kidneys because apoptotic regression of the organ primordia
Jervell and Lange-Nielsen syndrome

- Autosomal recessive
- 0.25% of profound congenital hearing loss
- Prolonged QT interval, sudden syncopal attacks
- Severe to profound sensorineural hearing loss
- 2 genes identified:
 - \textit{KVLQT1}: expressed in the stria vascularis of mouse inner ear
 - \textit{KCNE1}
 - Both gene products form subunits of a potassium channel involved in endolymph homeostasis
Norrie syndrome

- X-linked inheritance
- Ocular symptoms with congenital blindness: pseudotumor of the retina, retinal hyperplasia, hypoplasia and necrosis of the inner layer of the retina, cataracts, phthisis bulbi
- Progressive sensorineural hearing loss
- Mental deficiency
- *Norrin* gene: encodes a protein related to mucins
Pendred Syndrome

- Most common form of syndromal deafness - 4-10%
- Autosomal recessive disorder
- Sensorineural hearing loss
 - bilateral, severe to profound, and sloping in the higher frequencies
 - incomplete partition of the cochlear
Pendred syndrome

- **Vestibular dysfunction:**
 - enlargement of the vestibular aqueducts, the endolymphatic sac and duct

- **Thyroid goiter:**
 - usually euthyroid, can be hypothyroid
 - defective organic binding of iodine
 - positive potassium perchlorate discharge test
Pendred syndrome

- **PDS** gene mutations:
 - on chromosome 7q31
 - encodes pendrin: an anion transporter in inner ear, thyroid, kidney

- **PDS** knockout mouse:
 - complete deaf
 - endolymph-containing spaces enlargement
 - inner and outer hair cell degeneration
 - no thyroid abnormality
Stickler syndrome

- Autosomal dominant
- Variable sensorineural hearing loss
- Ocular symptoms: progressive myopia, resulting in retina detachment and blindness
- Arthropathy: premature degenerative changes in various joints
- Orofacial features: midface hypoplasia
- Three genes: *COL2A1, COL11A1, COL11A2*
 - Associated with defective collagen protein
 - Each gene mutation corresponding to a phenotype
Treacher-collins syndrome

- Autosomal dominant with variable expression
- Conductive hearing loss
- Craniofacial abnormalities:
 - Coloboma of the lower lids, micrognathia, microtia, hypoplasia of zygomatic arches, macrostomia, slanting of the lateral canthi
- \textit{TCOF1} gene:
 - Involved in nucleolar-cytoplasmic transport
 - Mutation results in premature termination of the protein product
Usher syndrome

- Autosomal recessive disorder
- Sensorineural hearing loss
- Progressive loss of sight due to retinitis pigmentosa
- Three different clinical types
- 11 loci and 6 genes have been identified
Usher syndrome

- **Type 1:**
 - Profound congenital deafness, absent vestibular response, onset of retinitis pigmentosa in the first decade of life

- **Type 2:**
 - Sloping congenital deafness, normal vestibular response, onset of retinitis pigmentosa in first or second decade of life

- **Type 3:**
 - Progressive hearing loss, variable vestibular response, variable onset of retinitis pigmentosa
<table>
<thead>
<tr>
<th>Type</th>
<th>Locus name</th>
<th>gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>USH1A</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>USH1B</td>
<td>MYO7A</td>
</tr>
<tr>
<td></td>
<td>USH1C</td>
<td>USH1C</td>
</tr>
<tr>
<td></td>
<td>USH1D</td>
<td>CDH23</td>
</tr>
<tr>
<td></td>
<td>USH1E</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>USH1F</td>
<td>PCDH15</td>
</tr>
<tr>
<td></td>
<td>USH1G</td>
<td>unknown</td>
</tr>
<tr>
<td>II</td>
<td>USH2A</td>
<td>USH2A</td>
</tr>
<tr>
<td></td>
<td>USH2B</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>USH2C</td>
<td>unknown</td>
</tr>
<tr>
<td>III</td>
<td>USH3</td>
<td>USH3</td>
</tr>
</tbody>
</table>
Usher syndrome

- **MYO7A**: encodes for myosin 7A, molecular motor for hair cells
- **USH1C**: encodes for harmonin, bundling protein in stereocilia
- **CDH23**: encodes cadherin 23, an adhesion molecule may be important for crosslinking of stereocilia, also may be involved in maintaining the ionic composition of the endolymph
- Myosin 7A, harmonin, and cadherin 23 form a transient functional complex in stereocilia
Waardenburg syndrome

- About 2% of congenital hearing loss
- Usually autosomal dominant
- Dystonia canthorum
- Pigmentary abnormalities of hair, iris and skin
- Sensorineural hearing loss
- 4 clinical subtypes
Waardenburg syndrome

- **Type 1:**
 - With dystopia canthorum
 - Penetrance for hearing loss 36% to 58%
 - Wide confluent eyebrow, high broad nasal root, heterochromia irides, brilliant blue eyes, premature gray of hair, eyelashes, or eyebrows, white forelock, vestibular dysfunction

- **Type 2:**
 - like type 1 but without dystopia canthorum
 - Hearing loss penetrance as high as 87%
Waardenburg syndrome

- **Type 3 (Klein-Waardenburg syndrome):**
 - Type 1 clinical features + hypoplastic muscles and contractures of the upper limbs

- **Type 4 (Shah-Waardenburg syndrome):**
 - Type 2 clinical features + Hirschsprung’s disease

- Five genes on five chromosomes have been identified
Waardenburg syndrome

- **Type 1 and type 3:**
 - all associated with *PAX3* gene mutation

- **Type 2:**
 - Associated with dominant mutations of *MITF* gene
 - Associated with homozygous deletion of *SLUG* gene
 - MITF was found to activate the *SLUG* gene
Waardenburg syndrome

- **Type 4:**
 - *EDNRB* gene – encodes endothelin-b receptor, development of two neural crest derived-cell lineages, epidermal melanocytes and enteric neurons
 - *EDN3* gene – encodes endothelin-3, ligand for the endothelin-b receptor
 - *SOX10* gene – encodes transcription factor
Non-syndromic deafness

- About 70-80% of hereditary hearing loss
- Autosomal dominant (15%):
 - 41 loci (DFNA) and 20 genes identified
 - Usually postlingual onset, progressive
 - Severity from moderate to severe
 - Majority of the hearing loss in middle, high or all frequencies
- Autosomal recessive (80%):
 - 33 loci (DFNB) and 21 genes identified
 - Usually prelingual onset, non-progressive
 - Severity from severe to profound
 - All frequencies affected
- X-linked (2-3%):
 - 4 loci (DFN) and 1 gene identified
 - Either high or all frequencies affected
Non-syndromic deafness

- Identified genes encode:
 - Unconventional myosin and cytoskeleton proteins
 - Extracellular matrix proteins
 - Channel and gap junction components
 - Transcription factors
 - Proteins with unknown functions

- More than one gene found in the same loci (DFNA2 and DFNA3)

- Some genes cause autosomal dominant and autosomal recessive hearing loss

- Some genes cause non-syndromic and syndromic hearing loss
Ion homeostasis

- Potassium recycling to maintain high potassium concentration in endolymph
- *KCNQ4*: encodes a potassium channel
- *SLC26A4*: encodes an anion transporter, pendrin
- 4 gap junction genes: *GJB2, GJB3, DJB6, GJA1*
 - Encode connexin proteins
 - Function of gap junctions: molecular pores connecting two adjacent cells allowing small molecules and metabolites exchange
GJB2 (Gap Junction Beta 2)

- The first non-syndromic sensorineural deafness gene to be discovered
- On chromosome 13q11
- 50% of recessive non-syndromic hearing loss
- Encodes connexin 26
 - Expressed in stria vascularis, basement membrane, limbus, spiral prominence of cochlea
 - Recycling of potassium back to the endolymph after stimulation of the sensory hair cell
- 80 recessive and 6 dominant mutations
- 35delG mutation
 - One guanosine residue deletion from nucleotide position 35
 - Results in protein truncation
 - High prevalence in Caucasian population
 - Screening test available
Gap Junction: docking of two connexons.

Homotypic

Heterotypic

Heteromeric

Cell 1

Intercellular Gap

Cell 2

Connexin

Connexon: 6 connexins in a hexameric torus.

Homomeric

Heteromeric
Fig. 2. The "common" 35delG mutation arises from loss of a guanosine residue at nucleotide position 35 of GJB2 and results in a shift in reading frame that produces premature protein truncation.
Transcription factors

- **POU3F4**
 - X-linked mixed hearing loss
 - Stapes fixation causing conductive hearing loss
 - Increased perilymphatic pressure
 - Causing the typical “gusher” during stapes footplate surgery – stapes-gusher syndrome

- **POU4F3**
 - Autosomal dominant hearing loss
 - Knockout mice fail to develop hair cells with subsequent loss of spiral and vestibular ganglia

- **EYA4**

- **TFCP2L3**
Cytoskeleton proteins

- Associated with actin-rich stereocilia of hair cells
- Myosin: actin-dependent molecular motor proteins
 - MYH9
 - MYO3A, MYO6, MYO7A, MYO15 – all have vestibular dysfunction
- Otoferlin: calcium triggered synaptic vesicle trafficking
 - OTOF
 - one particular mutation accounts for 4.4% of recessive prelingual hearing loss negative for GJB2 mutation
- Actin-polymerization protein: HDIA1
- Harmonin: organize multiprotein complexes in specific domains (tight junction, synaptic junction)
 - USH1C (also in Usher type 1c)
- Cadherin: important for stereocilia organization
 - CDH23 (also in Usher type 1d)
Extracellular matrix components

- **TECTA**
 - Encodes alpha tectorin-component of the tectorial membrane
 - Knockout mice with detachment of tectorial membrane from the cochlear epithelium

- **COL11A2**
 - Encodes collagen type XI polypeptide subunit 2
 - Knockout mice with atypical and disorganized collagen fibrils of the tectorial membrane

- **COCH**
 - Encodes COCH (coagulation factor C homologue) protein
 - Expressed in cochlear and vestibular organs
 - Associated with vestibular problems
Unknown function genes

- **WFS1**
 - Dominant sensorineural hearing loss
 - Responsible for 75% of low frequency nonsyndromic progressive hearing
 - Responsible for up to 90% of cases of Wolfram syndrome, a recessive disorder with diabetes mellitus, diabetes insipidus, optic atrophy, and deafness
Mitochondrial disorders

- 2-10 mitochondrial chromosomes in each mitochondrion
- Transmitted only through mothers
- With syndromic hearing loss
 - Associated with systemic neuromuscular syndromes: such as Kearns-Sayre syndrome, MELAS, MERRF
 - Also in families with diabetes and sensorineural hearing loss
 - Associated with skin condition: palmoplantar keratoderma
- With non-syndromic hearing loss
- With aminoglycoside ototoxic hearing loss
 - A1555G mutation in the 12S ribosomal RNA gene
 - Maternally transmitted predisposition to aminoglycoside ototoxicity
 - Accounts for 15% of all aminoglycoside induced deafness
Evaluation

- **History**
 - Prenatal: infection, medication
 - Perinatal: risk factors
 - Postnatal: infection, speech and language milestones
- **Family:**
 - Hearing loss in first and second degree relatives
 - Hearing loss occurred before age 30
 - Consanguinity or common origin from ethnically isolated areas
Evaluation

- Physical exam: features of syndromic hearing loss
 - Hair color: white forelock, premature graying
 - Facial shape
 - Skull shape
 - Eye: color, position, intercanthal distance, cataracts, retinal findings
 - Ear: preauricular pit, skin tags, shape and size of pinna, abnormality of EAC and TM
 - Oral cavity: cleft
 - Neck: brachial anomalies, thyroid enlargement
 - Skin: hyper/hypopigmentation, café-au-lait spots
 - Digits: number, size, shape
 - Neurological exam: gait, balance
Evaluation

- Audiologic evaluation
- Lab testing: based on history and physical exam
 - Torch titers
 - CBC and electrolytes
 - Urinalysis
 - thyroid function test (perchlorate discharge test)
 - EKG
- Radiological study:
 - CT temporal bone is the test of choice
 - Dilated vestibular aqueduct (>1.5mm at middle third or >2mm anywhere along its length)
 - Mondini malformation
 - Semicircular canal absence or dysplasia
 - Internal auditory canal narrowing or dilation
 - Renal ultrasound
Genetic screening

- **GJB2**
 - most common cause of severe to profound nonsyndromic recessive deafness
 - High prevalence of 35delG mutation
 - Small size of *GJB2* gene

- **SLC26A4** - most common cause of Mondini dysplasia or dilated vestibular aqueduct syndrome

- **EYA1** - 30-40% of families with a branchio-oto-renal phenotype
Genetic counseling

Goal:
- Cause of deafness
- Other medical implication
- Chance of recurrence in future children
- Implications for other family members
- Assist family in making choices that are appropriate for them

Team approach including clinical/medical geneticist, genetic counselor, social worker, psychologists

Consent need to be obtained for genetic testing
Cochlear gene therapy

- Adenoid associated virus as vector
- Routes of delivery
- Safety concern
 - Hearing loss
 - Regional and distal dissemination
Resources for hereditary hearing loss

- Hereditary hearing loss home page
 http://www.uia.ac.be/dnalab/hhh

- Online Mendelian Inheritance in Man
 www.ncbi.nlm.nih.gov/Omim
Genetic Hearing Loss

Jing Shen M.D.
Faculty Advisor: Ronald Deskin M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
March 2004