Laryngeal Trauma

Michael Underbrink, M.D.
Faculty Advisor: Anna Pou, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
September 3, 2003
Introduction

- Incidence: 1:30,000 ER VISITS
- Airway
- Voice
- Outcome determined by initial management
Anatomy and Physiology of Larynx

- Well protected (mandible, sternum, neck flex)
- Functions: Airway, tracheobronchial protection, voice
- Support: Hyoid, thyroid, cricoid
- Innervation: RLN, SLN
- Supraglottis: soft tissue
- Glottis: relies on external support, crico-arytenoid mobility and neuromuscular input
- Subglottis: cricoid, narrowest in infants
Anatomy and Physiology of Larynx
Mechanism of Injury

- **Blunt** –
 - MVA, strangulation, clothesline, sports related
 - Significant internal damage, minimal external signs
- **Penetrating**
 - GSW: damage related to velocity
 - Knife: easy to underestimate damage
Blunt Trauma: Mechanisms of Injury

- Compression over spine
- Static lateral force
- L-T separation
Compression Over Spine
Static Lateral Force
Initial Evaluation

- ATLS principles
- Secure airway – local tracheotomy
- Intubation can worsen airway
- Avoid cricothyroidotomy
- Pediatric: tracheotomy over bronchoscope
- Clear C-spine
History

- Change in voice – most reliable
- Dysphagia
- Odynophagia
- Difficulty breathing - more severe injury
- Anterior neck pain
- Inability to tolerate supine position – probable airway compromise imminent
Physical exam

- Stridor
- Hoarseness
- Subcutaneous emphysema
- Hemoptysis
- Laryngeal tenderness, ecchymosis, edema
- Loss of thyroid cartilage prominence
- Associated injuries - vascular, cervical spine, esophageal
Physical Exam
Flexible Fiberoptic Laryngoscopy

• Perform in emergency room
• Findings dictate next step
 – CT scan
 – Tracheotomy
 – Endoscopic
 – Surgical Exploration
 – Other studies
Laryngoscopic Exam
Radiographic Imaging

• C-spine
• CT if airway stable and mild abnormality on flexible exam.
 – Good for intermediate cases with scope limited by edema
• Angiography and contrast esophagrams considered
CT Scan

Indications:

- Significant mechanism of injury
- Rule out occult fracture/dislocation
- Confirmation of suspected fracture
- Determine extent of fracture(s)
CT Scan
Laryngotracheal Injury Classification

- Group I: Minor hematoma, no fracture
- Group II: Edema/hematoma, minor mucosal injury, no exposed cartilage, non-displaced fracture
 - Group III: Massive edema, mucosal tears, exposed cartilage, cord immobility
 - Group IV: See group III, more than 2 fracture lines, massive trauma laryngeal mucosa
 - Group V: Complete laryngotracheal separation
 \cite{Schaefer1982}
Laryngeal Trauma

Asymptomatic or minimal symptoms

F/L

CT scan

Mild Edema
Small hematoma
Non-displaced linear fracture
Intact mucosa
Small lacerations

Displaced fracture
(by CT or exam)
Loss of mucosa or extensive laceration
Bleeding
Exposed cartilage

Bed rest
Cool mist
Antibiotics
Steroids
Anti-reflux

Tracheotomy

Panendoscopy

Explore
Laryngeal Trauma

Respiratory distress, open wounds, bleeding

Tracheotomv

Panendoscopy

Explore
Acute Management of Laryngeal Trauma

- History of Neck Trauma, Examine for Physical Signs of Trauma
 - Airway Stable
 - Flexible Fiberoptic Laryngoscopy
 - Mucosa or Cartilage Disrupted
 - Computed Tomographic Scan
 - Abnormal
 - Normal
 - Normal Endolarynx
 - Impending Airway Obstruction
 - Tracheotomy
 - Direct Laryngoscopy and Esophagoscopy
 - Hematoma, Small Laceration, but Endolarynx Intact
 - Medical Management
 - Isolated Fracture, Displaced Thyroid, but Endolarynx Intact
 - Open Exploration of Neck With Open Reduction and Internal Fixation of Fracture
 - Mucosa or Cartilage Disrupted
 - Open Reduction and Internal Fixation of Fractures, Repair Mucosal Lacerations + Endolaryngeal Stent
 - Mucosal or Cartilage Disrupted
 - Tracheotomy or Intubation
 - Direct Laryngoscopy and Esophagoscopy
 - Laryngeal Thyrotomy
 - Laryngeal Cartilage Unstable, Anterior Commissure Disrupted, Massive Mucosal Injuries
 - Open Reduction and Internal Fixation of Fractures, Repair
Indications for Repair

- Comminuted fractures
- Displaced fractures
- All fractures involving the median and paramedian thyroid ala
- Cricoid fracture
- LT separation
- Large mucosal lacerations
- Laceration of AC and free edge VC
- Disruption CA joint
- VC immobility
- Exposed cartilage
Laryngeal exploration and repair

232-1. Incisions for repair of laryngeal fracture

Optional incision
Laryngeal exploration and repair
Laryngeal exploration and repair
Laryngeal exploration and repair

Closure (figure-of-eight sutures) and secured stent
Goals of Laryngeal exploration

- Cover all cartilage to prevent granulation tissue and fibrosis
- Primary closure ideal, can undermine mucosa or use advancement flaps from epiglottis or pyriforms
- Palpate arytenoids and reposition if necessary
- Resuspend anterior commissure, ORIF of fractures
Laryngeal Framework Repair
Laryngeal Framework Repair
Endolaryngeal stenting

- Necessary for disrupted A.C., multiple displaced fractures, and/or multiple and severe mucosal lacerations
- Provides support and prevents stenosis but can cause iatrogenic injury (remove between 2 to 3 weeks)
- 4 point fixation allows safe recovery
Endolaryngeal stenting

FIG. 68-6. Fixation of Portex endolaryngeal stent using nonabsorbable sutures.
Treatment Goals

- Preservation of airway
- Prevention of aspiration
- Restoration of normal voice
Outcomes

• Airway
 – Poor – trach dependent
 – Fair – mild aspiration or exercise intolerance
 – Good – preinjury status
Outcomes

• Voice
 – Poor: aphonia or whisper
 – Fair: changed or hoarse
 – Good – normal voice
Outcomes

• Swallowing
 – Normal
 – Abnormal
 – Subjective patient report
Outcomes

• Medical better than surgical
• Voice results worse with use of stents (airway the same), less time in better
• Vocal cord paralysis – poorer outcome
• Improved results with repair <48 hours
Conclusions

• Rare injury
• Assess airway first and follow systematic management
• Timely evaluation with high index of suspicion for classic signs and symptoms
• Don’t forget about associated vascular or esophageal injuries
• Treatment based on site/extent of injury