Cerebellopontine Angle Masses

Alan L. Cowan, MD
Faculty Advisor: Arun Gadre, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
June 2, 2004
Cerebellopontine Angle

- Area of the lateral (quadrimenal) cistern containing CSF, arachnoid tissue, cranial nerves and their associated vessels.

- Borders
 - Medial – lateral surface of the brainstem
 - Lateral – petrous bone
 - Superior – middle cerebellar peduncle & cerebellum
 - Inferior – arachnoid tissue of lower cranial nerves
 - Posterior – cerebellar peduncle
Definitions

- **Intra-axial** – within the parenchyma of the brain or brainstem

- **Extra-axial** – outside of the brainstem parenchyma

- **CPA lesions** – lesions arising within the confines of the CPA.

- **Petrosal lesions** – lesions arising from the petrous portion of the temporal bone. These may extend into the CPA.
Differential

- Acoustic Neuroma
- Meningioma
- Epidermoid
- Rare CPA lesions
- Petrous Apex masses
- Vascular malformations
- Intra-axial masses
Acoustic Neuroma

- Comprises 60-92% of CPA lesions
- Majority of cases (95%) are sporadic
- Occur with equal frequency on the Superior and Inferior vestibular nerves

Pathophysiology

- Composed of Antoni A&B tissue
- Antoni A – compact tissue with spindle cells in palisades (most common)
- Antoni B – loose tissue with cyst formation.
AN symptoms

- **Cochlear**
 - Asymmetric SNHL
 - SSNHL
 - Up to 26% of AN may present with SSNHL
 - Only 1-2.5% of SSNHL is due to AN
 - Tinnitus
 - Decreased discrimination
 - Rollover

- **Vestibular**
 - Dysequilibrium (more common)
 - Vertigo (less common)

- **Facial**
 - Facial weakness (suspect other tumors - epidermoid)
 - Hitselberger’s sign – decreased sensation of EAC due to compression of CN VII sensory roots
AN symptoms

- Cerebellar
 - Wide gait
 - Falling to side of lesion

- Brainstem
 - Headache
 - Visual Loss

- Other Cranial nerves
 - V – facial numbness (large tumors, trigeminal schwannoma)
 - VI – lateral rectus palsy (rare)
 - IX – dysphagia (large tumors, jugular foramen syndrome)
 - X – hoarseness, aspiration (large tumors, jugular foramen syndrome)
 - XI – shoulder weakness (large tumors, jugular foramen syndrome)
AN - Radiology

- **CT**
 - Non-contrast: usually isodense to brain, calcification is rare
 - IV Contrast: Over 90% of non-treated tumors enhance homogeneously
 - Gas cisternogram: no longer done

- **MRI**
 - T1 – isointense to brain, hyperintense to CSF
 - T2 – hyperintense to brain, iso/hypo-intense to CSF
 - Gadolinium – Intense enhancement of tumor on T1
AN Features

- Centered on Porus Acousticus
- Acute angles to petrous bone
- Often involves the IAC
- Homogeneous enhancement
- No dural tail
- No calcifications
Meningioma

- Second most common CPA lesion 3-7 %
- Arise from cap cells near arachnoid villi which are more prominent near cranial nerve foramina and venous sinuses.
- Usually arise from posterior surface of the petrous bone and usually do not extend into IAC

Symptoms
- Ataxia
- Nystagmus
- Facial hypesthesia
- Audiologic findings may show retrocochlear pattern or may be normal.
Meningioma

- **Radiologic features**
 - Tumors generally hemispherical with obtuse angles to petrous bone
 - Dural tail often present (50-75%)
 - May herniate into middle fossa (50%)
 - May show calcification (25%)
 - Pial blood vessels with flow voids may be present at the margins.

- **Treatment**
 - Surgical removal is treatment of choice
 - XRT may be used to supplement if complete excision not possible
Meningioma Features

- Arise from surface of petrous bone
- Obtuse angles to petrous bone
- Uncommonly involves the IAC
- Frequently with dural tail
- Calcifications common
- Pial vessel flow voids
Epidermoid

- Accounts for 2-6% of CPA masses
- Physiology
 - Congenital lesions that present in adulthood
 - Rests of ectodermal tissue containing stratified squamous lining and keratin
- May arise within the temporal bone or in the CPA
- Symptoms
 - Similar to acoustic neuroma and meningioma
 - Facial nerve paresis and facial twitching may occur
- Radiologic Features
 - May dumbell into middle fossa or contralateral cistern
 - Highly variable in shape with a cauliflower surface appearance
 - CT usually shows a mass hypodense to CSF
 - MRI – homogeneous lesion
 - T1 – isointense to CSF
 - T2 – isointense to CSF
 - Differentiation from arachnoid cyst may be difficult
 - Diffusion weighting will show moderate intensity for epidermoid, but low intensity for arachnoid cysts.
Arachnoid Cyst
Other Extra-axial Masses

- **Primary**
 - Arachnoid Cyst
 - Schwannomas (CN V-XII)
 - Hemangiomas
 - Lipoma
 - Dermoid/Teratoma

- **Secondary**
 - Paraganglioma
 - Chondroma
 - Chordoma

- **Extension of Petrous bone tumors**
Schwannomas

- **CN VII**
 - Symptoms may be identical to acoustic schwannoma
 - Differentiation from acoustic schwannoma may not be possible by radiography unless lesion extends distal to geniculate ganglion.

- **CN IX – XI**
 - Jugular Foramen syndrome
 - Dysphagia
 - Hoarseness
 - Shoulder weakness
 - Enlargement of Jugular Foramen

- **CN XII**
 - Hemiatrophy of tongue
 - Enlargement of hypoglossal canal
CN V Schwanoma
CN VII Schwanoma
CN X
Schwanoma
Vascular

- Vertebrobasilar dolichoectasia
 - Enlongation and dilation of the vertebrobasilar artery.
 - Symptoms - Facial spasm, trigeminal neuralgia

- AICA loop
 - May loop over, under, or between CN VII & CN VIII.
 - Symptoms - vertigo

- Giant Aneurysms

- Hemangioma

- Paragangliomas (may extend to CPA)
 - Glomus Jugulare
 - Glomus Tympanicum
Vertebrobasilar Dolichoectasia

[A set of medical images showing different views of the vertebral basilar system with annotations]
AICA loop
Giant Aneurysms
Glomus Jugulare
Petrosus Apex

- Cholesterol granulomas (most common)
- Epidermoid cyst
- Trigeminal schwannoma
- Carotid artery aneurysm
- Chondroma
- Chondrosarcoma
Intra-axial

- Astrocytoma
- Ependymoma
- Medulloblastoma
- Hemangioma / Hemangioblastoma
- Choroid plexus papilloma
- Metastasis
Imaging Techniques

- **XR**

- **CT**
 - Non-contrasted
 - Iodine based contrast - uptake by selected lesions
 - Gas CT cisternogram – no longer performed

- **MRI**
 - T1 – Fat density is bright
 - T2 – Water density is bright
 - FLAIR (Fluid Attenuated Inversion Recovery)
 - FSE (Fast Spin Echo)
 - CISS (Constructive Interference Steady State)
 - Gadolinium
Treatment
Treatment

- Observation

- Surgery
 - Translabrynthine
 - Retrosigmoid
 - Middle Fossa

- Radiotherapy
 - Conventional radiation therapy
 - Stereotactic radiosurgery
Observation

- **Indications**
 - Advanced age (over 65 or 75)
 - Poor health
 - Lack of symptoms
 - Non-progression of symptoms
 - Only hearing ear
 - Isolated IAC tumors in the elderly

- **Contraindications**
 - Young patient
 - Healthy patient
 - Symptomatic progression
 - Compression of brainstem structures
Trans-labyrinthine

- **Indications**
 - Extension into CPA > 0.5 - 1 cm
 - Non-serviceable hearing
 - Adequate contralateral hearing in large tumors

- **Contraindications**
 - Serviceable hearing
Middle Fossa

Indications
- Small tumor
- Intracanalicular tumor
- Moderate CPA involvement
- Adequate hearing (SRT<50 db, Disc >50%)

Contraindications
- Large tumors
- Extensive CPA involvement (> 0.5 – 1 cm)
- Older patients (> 60 yrs. may have higher rate of bleeding or stroke)
Retrosigmoid

Indications
- Serviceable hearing
- Large tumors
- Compression of brainstem

Contraindications
- Functional hearing with extensive IAC involvement
- Intracanalicular tumors
Stereotactic Radiosurgery

- **Indications**
 - Small tumors
 - Functional hearing
 - Older patients (>75 Hirsch)
 - Medically unstable patients (Hirsch)
 - Previous resection (Hirsch)

- **Contraindications**
 - Tumors > 3 cm
 - Prior radiotherapy
 - Tumor compressing brainstem

- **Outcome**
 - Local control (non-progression): 94%
 - Hearing preservation: 47 – 77%

- **Complications**
 - Facial nerve injury: 5 - 17%
 - Trigeminal nerve injury: 2 - 11%
 - Hydrocephalus: 3%

Bibliography

Cerebellopontine Angle Masses

Alan L. Cowan, MD
Faculty Advisor: Arun Gadre, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
June 2, 2004