Otosclerosis

Christopher Muller, M.D.
Faculty Advisor: Arun Gadre, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Galveston, Texas
Grand Rounds Presentation
June 4, 2003
Introduction

- **Otosclerosis**
 - Primary metabolic bone disease of the otic capsule and ossicles
 - Results in fixation of the ossicles and conductive hearing loss
 - May have sensorineural component if the cochlea is involved
 - Genetically mediated
 - Autosomal dominant with incomplete penetrance (40%) and variable expressivity
History of Otosclerosis and Stapes Surgery

- 1704 – Valsalva first described stapes fixation
- 1857 – Toynbee linked stapes fixation to hearing loss
- 1890 – Katz was first to find microscopic evidence of otosclerosis
- 1893 – Politzer described the clinical entity of “otosclerosis”
History of Otosclerosis and Stapes Surgery

- Gunnar Holmgren
 - Father of fenestration surgery
 - Single stage technique

- Sourdille
 - Holmgren’s student
 - 3 stage procedure
 - 64% satisfactory results
History of Otosclerosis and Stapes Surgery

- **Julius Lempert**
 - Popularized the single staged fenestration procedure

- **John House**
 - Further refined the procedure
 - Popularized blue lining the horizontal canal
History of Otosclerosis and Stapes Surgery

- Fenestration procedure for otosclerosis
 - Fenestration in the horizontal canal with a tissue graft covering
 - >2% profound SNHL
 - Rarely complete closure of the ABG
History of Otosclerosis and Stapes Surgery

- Samuel Rosen
 - 1953 – first suggest mobilization of the stapes
 - Immediate improved hearing
 - Re-fixation
History of Otosclerosis and Stapes Surgery

- John Shea
 - 1956 – first to perform stapedectomy
 - Oval window vein graft
 - Nylon prosthesis from incus to oval window
Epidemiology

- 10% overall prevalence of histologic otosclerosis
- 1% overall prevalence of clinically significant otosclerosis
Epidemiology

<table>
<thead>
<tr>
<th>Race</th>
<th>% incidence of otosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>10%</td>
</tr>
<tr>
<td>Asian</td>
<td>5%</td>
</tr>
<tr>
<td>African American</td>
<td>1%</td>
</tr>
<tr>
<td>Native American</td>
<td>0%</td>
</tr>
</tbody>
</table>
Epidemiology

- Gender
 - Histologic otosclerosis – 1:1 ratio
 - Clinical otosclerosis – 2:1 (W:M)
 - Increase progression during pregnancy (10%-17%)
 - Bilaterality more common (89% vs. 65%)
Epidemiology

- **Age**
 - 15-45 most common age range of presentation
 - Youngest presentation 7 years
 - Oldest presentation 50s
 - 0.6% of individuals <5 years old have foci of otosclerosis
Pathophysiology

- Osseous dyscrasia
 - Resorption and formation of new bone
 - Limited to the temporal bone and ossicles
 - Inciting event unknown
 - Hereditary, endocrine, metabolic, infectious, vascular, autoimmune, hormonal
Pathophysiology

- Siebenmann – first to describe the microscopic appearance
 - Spongy
 - Usually limited to the anterior footplate
Pathology

- Two phases of disease
 - Active (otospongiosis phase)
 - Osteocytes, histiocytes, osteoblasts
 - Active resorption of bone
 - Dilation of vessels
 - Schwartzze’s sign
 - Mature (sclerotic phase)
 - Deposition of new bone (sclerotic and less dense than normal bone)
“Blue mantles of Manasseh”
Pathology

- Most common sites of involvement
 - Fissula ante fenestrum
 - Round window niche (30%-50% of cases)
 - Anterior wall of the IAC
Fissula ante and post fenestrum
Fissula ante fenestrum
Non-clinical foci of otosclerosis
Annular ligament involvement
Footplate Involvement
Anterior footplate involvement
Bipolar involvement of the footplate
Round Window

- Round Window Membrane
- Otosclerosis
- Internal Auditory Canal
- Posterior Ampulla
Labyrinthine Otosclerosis

- 1912 – Siebenmann described labyrinthine otosclerosis
 - Suggested otosclerosis may cause SNHL
 - Toxic metabolites
 - Decreased blood supply
 - Direct extension
Hyalinization of the spiral ligament
Erosion into inner ear
Diagnosis
History

- Most common presentation
 - Women in her 20s or 30s
 - Conductive or Mixed hearing loss
 - Slowly progressive,
 - Bilateral (80%)
 - asymmetric
 - Tinnitus (75%)
History

- Age of onset of hearing loss
- Progression
- Laterality
- Associated symptoms
 - Dizziness
 - Otalgia
 - Otorrhea
 - Tinnitus
History

- Vestibular symptoms
 - 25%
 - Most commonly dysequilibrium
 - Occasionally attacks of vertigo with rotatory nystagmus
- Prior otologic surgery
- History of ear infections
History

- Family history
 - 2/3 have a significant family history
 - Particularly helpful in patients with severe or profound mixed hearing loss
Physical Exam

- **Ototoxicscopy**
 - Most helpful in ruling out other disorders
 - Middle ear effusions
 - Tympanosclerosis
 - Tympanic membrane perforations
 - Cholesteatoma or retraction pockets
 - Schwartzte’s sign
 - Red hue in oval window niche area
 - 10% of cases

- **Pneumatic otoscopy**
 - Distinguish from malleus fixation
Physical Exam

- Tuning forks
 - Hearing loss progresses from low frequencies to high frequencies
 - 256, 512, and 1024 Hz TF should be used
 - Rinne
 - 256 Hz – negative test indicates at least a 20 dB ABG
 - 512 Hz – negative test indicates at least a 25 dB ABG
Differential Diagnosis

- Ossicular discontinuity
- Congenital stapes fixation
- Malleus head fixation
- Paget’s disease
- Osteogenesis imperfecta
Audiometry

- Tympanometry
- Impedance testing
 - Acoustic reflexes
- Pure tones
Tympanometry

- Jerger (1970) – classification of tympanograms
 - Type A
 - Type A
 - Type As
 - Type Ad
 - Type B
 - Type C
Acoustic Reflexes

- Result from a change in the middle ear compliance in response to a sound stimulus
- Change in compliance
 - Stapedius muscle contraction
 - Stiffening of the ossicular chain
 - Reduces the sound transmission to the vestibule
Acoustic Reflexes

- Otosclerosis has a predictable pattern of abnormal reflexes over time
 - Diphasic reflex pattern
 - Reduced reflex amplitude
 - Elevation of ipsilateral thresholds
 - Elevation of contralateral thresholds
 - Absence of reflexes
Acoustic Reflexes

1. Normal
 Compliance
 Stimulus

2. Mixed
 Compliance
 Stimulus

3. Diphasic
 Compliance
 Stimulus

4. Fixed
 Compliance
 Stimulus
Pure Tone Audiometry

- Most useful audiometric test for otosclerosis
 - Characterizes the severity of disease
 - Frequency specific
Pure Tone Audiometry

- Low frequencies affected first
 - Below 1000 Hz
- Rising air line
 - “Stiffness tilt”
 - Secondary to stapes fixation
Pure Tone Audiometry

- With disease progression
 - Air line flattens
 - Secondary to mass effect
Pure Tone Audiometry

- Carhart’s notch
 - Hallmark audiologic sign of otosclerosis
 - Decrease in bone conduction thresholds
 - 5 dB at 500 Hz
 - 10 dB at 1000 Hz
 - 15 dB at 2000 Hz
 - 5 dB at 4000 Hz
Pure Tone Audiometry

- Carhart’s notch
 - Proposed theory
 - Stapes fixation disrupts the normal ossicular resonance (2000 Hz)
 - Normal compressional mode of bone conduction is disturbed because of relative perilymph immobility
 - Mechanical artifact
 - Reverses with stapes mobilization
Imaging

- Computed tomography (CT) of the temporal bone
 - Proponents of CT for evaluation of otosclerosis
 - Pre-op
 - Characterize the extent of otosclerosis
 - Severe or profound mixed hearing loss
 - Evaluate for enlarge cochlear aqueduct
 - Post-op
 - Recurrent CHL
 - Re-obliteration vs. prosthesis dislocation
 - Vertigo
Imaging

- **CT**
 - **Axial cuts**
 - Patient position – canthomeatal line perpendicular to the table top
 - 1 mm cuts
 - Top of sup. SCC to bottom of the cochlea
 - **Coronal**
 - Patient position – supine w/ head overextended face turned 20 degrees ipsilateral
“Halo sign”
Paget’s disease
Osteogenesis Imperfecta
Natural history of otosclerosis

- 90% of all cases are never clinically apparent
- Foci begins in childhood
- Most commonly becomes symptomatic in the 3rd and 4th decades
- After clinical presentation
 - Conductive hearing loss progressive
 - Periods of quiescence and deterioration
 - Worsening tinnitus
 - Associated SNHL (rarely purely SN)
- Matures by age 50-70 with max. CHL of 50 dB
Management

- Medical – Sodium Fluoride
- Amplification
- Surgery
- Combinations
Patient Selection

- Factors
 - Result of TF tests and audiometry
 - Skill of the surgeon
 - Facilities
 - Medical condition of the patient
 - Patient wishes
Patient Counseling

- Options for treatment
 - Advantages and disadvantages of each
- Repeat clinic visit
Surgery

- Best surgical candidate
 - Previously un-operated ear
 - Good health
 - Unacceptable ABG
 - 25 to 40 dB, bilateral ABG recommended by different authorities
 - Negative Rinne test
 - Excellent discrimination
 - Desire for surgery
Surgery

- Other factors
 - Age of the patient
 - Elderly
 - Poorer results in the high frequencies
 - Congenital stapes fixation (44% success rate)
 - Juvenile otosclerosis (82% success rate)

- Occupation
 - Diver
 - Pilot
 - Airline steward/stewardess
Surgery

- Other factors
 - Vestibular symptoms
 - Meniere's disease
 - Concomitant otologic disease
 - Cholesteatoma
 - Tympanic membrane perforation
Endolymphatic Hydrops
Surgical Steps

- Subtleties of technique and style
 - Local vs. general anesthesia
 - Stapedectomy vs. partial stapedectomy vs. stapedotomy
 - Laser vs. drill vs. cold instrumentation
 - Oval window seals
 - Prosthesis
Pre-op

- Confirm the correct ear (largest ABG)
 - With the patient
 - Audiogram
 - History and physical exam
- Place CT and audiogram in a visible location in the OR for easy intra-operative evaluation
Canal Injection

- 2-3 cc of 1% lidocaine with 1:50,000 or 1:100,000 epinephrine
- 4 quadrants
- Bony cartilaginous junction
Raise Tympanomeatal Flap

- 6 and 12 o’clock positions
- 6-8 mm lateral to the annulus
- Take into account curettage of the scutum
Separation of chorda tympani nerve from malleus

- Separate the chorda from the medial surface of the malleus to gain slack
- Avoid stretching the nerve
- Cut the nerve rather than stretch it
Curettage of Scutum

- Curettage a trough lateral to the scutum, thinning it
- Then remove the scutum (incus to the round window)
- Visualize the pyramidal process and facial n.
Curettage of Scutum

- Exposure of pyramidal process and facial n.
- Preservation of bone over incus
Middle ear examination

- Mobility of ossicles
 - Confirm stapes fixation
 - Evaluate for malleus or incus fixation

- Abnormal anatomy
 - Dehiscent facial nerve
 - Overhanging facial nerve
 - Deep narrow oval window niche
Measurement for prosthesis

- Measurement
 - Lateral aspect of the long process of the incus to the footplate
- Average 4.5 mm
Total Stapedectomy

- **Uses**
 - Extensive fixation of the footplate
 - Floating footplate

- **Disadvantages**
 - Increased post-op vestibular symptoms
 - More technically difficult
 - Increased potential for prosthesis migration
Stapedotomy/Small Fenestra

- Originally for obliterated or solid footplates
 - Europe
 - 1970-80
- First laser stapedotomy performed by Perkins in 1978
- Advantages
 - Less trauma to the vestibule
 - Less incidence of prosthesis migration
 - Less fixation of prosthesis by scar tissue
Drill Fenestration

- 0.7mm diamond burr
 - Motion of the burr removes bone dust
 - Avoids smoke production
 - Avoids surrounding heat production
Laser Fenestration

- **Laser**
 - Avoids manipulation of the footplate
 - Argon and Potassium titanyl phosphate (KTP/532)
 - Wave length 500 nm
 - Visible light
 - Absorbed by hemoglobin
 - Surgical and aiming beam
 - Carbon dioxide (CO2)
 - 10,000 nm
 - Not in visible light range
 - Surgical beam only
 - Requires separate laser for an aiming beam (red helium-neon)
 - Ill defined fuzzy beam
Fenestration

- Causse et al. (1993)
 - Recommends posteriorly placed fenestration to better recreate the natural physiologic dynamics of the footplate
Pivoting stapes
Energy transmission to the stapes
Posterior Fenestration

- Posteriorly placed fenestration with the laser
- Causse also recommends following the laser with the diamond burr to remove char
Oval window seal

- Tragal perichondrium
- Vein (hand or wrist)
- Temporalis fascia
- Blood
- Fat
Vein graft
Reconstructing the annular ligament
Placement of the Prosthesis

- Prosthesis is chosen and length picked
- Some prefer bucket handle to incorporate the lenticular process of the incus
Stapedectomy vs. Stapedotomy

- ABG closure < 10dB (PTA)
Stapedectomy vs. Stapedotomy

- ABG closure at 4 kHz
Special Considerations and Complications in Stapes Surgery
Overhanging Facial Nerve

- Usually dehiscent
- Consider aborting the procedure
- Facial nerve displacement (Perkins, 2001)
 - Facial nerve is compressed superiorly with No. 24 suction (5 second periods)
 - 10-15 sec delay between compressions
 - Perkins describes laser stapedotomy while nerve is compressed
- Wire piston used
 - Add 0.5 to 0.75 mm to accommodate curve around the nerve
Floating Footplate

- Footplate dislodges from the surrounding OW niche
 - Incidental finding
 - More commonly iatrogenic

- Prevention
 - Laser
 - Footplate control hole

- Management
 - Abort
 - H. House favors promontory fenestration and total stapedectomy
 - Perkins favors laser fenestration
Floating Footplate

- Hearing results
 - Thin or blue footplate – 97% ABG closure (<10dB)
 - White or “biscuit” footplate – 52% ABG closure
Diffuse Obliterative Otosclerosis

- Occurs when the footplate, annular ligament, and oval window niche are involved
 - Bone is thinned with a small cutting burr
 - Blue lined at anteroposterior edges first
Perilymphatic Gusher

- Associated with patent cochlear aqueduct
- More common on the left
- Increased incidence with congenital stapes fixation
- Increases risk of SNHL

Management

- Ruff up the footplate
- Rapid placement of the OW seal then the prosthesis
- HOB elevated, stool softeners, bed rest, avoid Valsalva, +/- lumbar drain
Round Window Closure

- 20%-50% of cases
- 1% completely closed
- No effect on hearing unless 100% closed
- Opening has a high rate of SNHL
SNHL

- 1%-3% incidence of profound permanent SNHL
 - Surgeon experience
 - Extent of disease
 - Cochlear
 - Prior stapes surgery

- Temporary
 - Serous labyrinthitis
 - Reparative granuloma

- Permanent
 - Suppurative labyrinthitis
 - Extensive drilling
 - Basilar membrane breaks
 - Vascular compromise
 - Sudden drop in perilymph pressure
Reparative Granuloma

- Granuloma formation around the prosthesis and incus
- 2 - 3 weeks postop
- Initial good hearing results followed by an increase in the high frequency bone line thresholds
- Associated tinnitus and vertigo
- Exam – reddish discoloration of the posterior TM

Treatment
- ME exploration
- Removal of granuloma

Prognosis – return of hearing with early excision
Vertigo

- Most commonly short lived (2-3 days)
- More prolonged after stapedectomy compared to stapedotomy
 - Due to serous labyrinthitis
- Medialization of the prosthesis into the vestibule
 - With or without perilymphatic fistula
- Reparative granuloma
Recurrent Conductive Hearing Loss

- Slippage or displacement of the prosthesis
 - Most common cause of failure
 - Immediate
 - Technique
 - Trauma
 - Delayed
 - Slippage from incus narrowing or erosion
 - Adherence to edge of OW niche
 - Stapes re-fixation
 - Progression of disease with re-obliteration of OW
 - Malleus or incus ankylosis
Amplification

- Excellent alternative
 - Non-surgical candidates
 - Patients who do not desire surgery
- Satisfaction rate less than with successful Sx
 - Canal occlusion effect
 - Amplification not used at night
Medical

- Sodium Fluoride
 - 1923 - Escot suggested using calcium fluoride
 - 1965 – Shambaugh popularized its use
- Mechanism
 - Fluoride ion replaces hydroxyl group in bone forming fluorapatite
 - resistant to resorption
 - Increases calcification of new bone
 - Causes maturation of active foci of otosclerosis
Sodium Fluoride

- Reduces tinnitus, reverses Schwartze’s sign, resolution of otospongiosis seen on CT
- OTC – Florical
- Dose – 20-120mg
- Indications
 - Non-surgical candidates
 - Patients who do not want surgery
 - Surgical candidates with + Schwartze’s sign
 - Treat for 6 mo pre-op
 - Postop if otospongiosis detected intra-op
- **Sodium fluoride**
 - Hearing results
 - 50% stabilize
 - 30% improve
 - Re-evaluate q 2 yrs with CT and for Schwartze’s sign to resolve
 - If fluoride are stopped – expect re-activation within 2-3 years
References

- Lempert J. Improvement in hearing in cases of otosclerosis: A new, one stage surgical technique. *Arch Otolaryngol* 1938;28:42-97
- Shambaugh G. Clinical diagnosis of cochlear (labyrinthine) otosclerosis. *Laryngoscope* 1965;75:1558-1562
- Reference