Pediatric Rhinosinusitis

Russell D. Briggs, M.D.
Faculty Advisor: Norman R. Friedman, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
May 2000
Introduction

- Sinusitis diagnosis rare 25 years ago
- Better understanding
 - pathophysiology, etiology, treatment outcomes
- Better diagnostic techniques
- 5-10% of viral URI’s complicated by bacterial rhinosinusitis
- Numerous controversies in diagnosis and treatment
Anatomy

Maxillary Sinus

- first to develop at day 65 of gestation
- seen on plain films at 4-5 months
- growth in phases at 3 years and 7 to 12 years
- slow expansion until 18 years
- average capacity is 14.75 mL
- drains into middle meatus
Anatomy

- Ethmoid Sinus
 - develop in third month of gestation
 - anterior from the lateral nasal wall
 - posterior from superior meatus
 - ethmoids seen on radiographs at one year
 - enlarges to reach adult size at age 12
 - 4-17 cells each side with volume 15 mL
 - drainage into middle and superior meatus
Anatomy

Frontal Sinus

- begins in fourth month of gestation from superior ethmoid cells
- seen on radiographs at age 5-6
- grows slowly to adult size by adolescence
- volume of 5-6 mL with variable development
- drains into frontal recess
Anatomy

◆ Sphenoid Sinus
 – originates in fourth gestational month from posterior part of nasal cavity
 – pneumatization begins at age 3
 – rapid growth to reach sella by age 7 and adult size at age 18
 – volume of 7.5 mL with drainage into superior meatus
Histology

- Pseudostratified columnar epithelium
- Cilia specifically arranged
- Similar mucosa to remainder of tracheobronchial tree
Pathophysiology and Etiology

- Normal function
 - patent ostia
 - normal cilia
 - normal mucous secretions

- Primary sinus abnormality is obstruction of the osteomeatal complex by edema or mechanical obstruction
Etiology

- Obstruction leads to retained secretions resulting in hypoxia of sinus mucosa--causes ciliary dysfunction and increased secretions--secondarily infected

- Edema and mechanical obstruction
 - local factors
 - regional factors
 - systemic factors
 - others
Etiology

Conditions That Predispose Children to Sinusitis

<table>
<thead>
<tr>
<th>Inflammatory conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viral upper respiratory infections</td>
</tr>
<tr>
<td>Irritants: tobacco smoke, fumes</td>
</tr>
<tr>
<td>Allergic/nonallergic rhinitis</td>
</tr>
<tr>
<td>Rhinitis medicamentosa</td>
</tr>
<tr>
<td>Gastroesophageal reflux</td>
</tr>
<tr>
<td>Local or anatomic</td>
</tr>
<tr>
<td>Osteomeatal complex abnormality: large ethmoid</td>
</tr>
<tr>
<td>bulla, abnormal uncinate process, concha bullosa, Haller cells</td>
</tr>
<tr>
<td>Nasal septal deviation (congenital or traumatic)</td>
</tr>
<tr>
<td>Partial choanal atresia</td>
</tr>
<tr>
<td>Adenoid hypertrophy</td>
</tr>
<tr>
<td>Nasal foreign body</td>
</tr>
<tr>
<td>Scars from previous surgery</td>
</tr>
<tr>
<td>Nasal polyps/tumor</td>
</tr>
<tr>
<td>Nasogastric or nasotracheal catheter</td>
</tr>
<tr>
<td>Systemic diseases</td>
</tr>
<tr>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Cilia dyskinesia: primary ciliary dyskinesia, Kartagener's or Young's syndrome</td>
</tr>
<tr>
<td>Primary immune deficiency: IgA deficiency, X-linked agammaglobulinemia, common variable immune deficiency, IgG dysfunction or subclass deficiency, hyper-IgM syndrome, complement deficiency, ataxia-telangiectasia</td>
</tr>
<tr>
<td>Granulomatous disease: Wegener's granulomatosis</td>
</tr>
<tr>
<td>Secondary immune deficiency: acquired immune deficiency syndrome</td>
</tr>
</tbody>
</table>

Etiological Factors in Pediatric Sinusitis

A. **Inflammatory:**
 1. Upper respiratory tract infections
 2. Allergy

B. **Mechanical:**
 1. Naso/septal deformity
 2. Osteomeatal complex obstruction
 3. Turbinate hypertrophy
 4. Polyps
 5. Tumors
 6. Large adenoids
 7. Foreign bodies
 8. Oste palate
 9. Choanal atresia or posterior nasal stenosis

C. **Systemic:**
 1. Cystic fibrosis
 2. Immotile cilia syndrome
 3. Kartagener’s syndrome
 4. Immunodeficiency
 5. Cyanotic congenital heart disease

D. **Miscellaneous:**
 1. Swimming, diving, flying
Definitions

◆ Rhinosinusitis
 – unable to differentiate clinically
 – isolated sinusitis rare

◆ Acute Rhinosinusitis
 – infection that resolves within 12 weeks
 – no URI during this 3 month period
 – divided into severe and nonsevere forms
Definitions

◆ **Recurrent Acute Rhinosinusitis**
 - repeated acute episodes completely resolving within 12 week time frame

◆ **Chronic Rhinosinusitis**
 - low grade symptoms and signs persistent for over 12 weeks
 - acute exacerbations can occur
Clinical Presentation

◆ History and PE vital to proper diagnosis

◆ Viral URI
 – unable to differentiate within 10 days
 – serous rhinorrhea--may be mucopurulent
 – nasal congestion and cough prominent
 – low grade fevers, malaise, headaches
 – nighttime cough may linger
Clinical Presentation

◆ Acute Nonsevere Rhinosinusitis
 – persistent cold symptoms over 10 days
 – rhinorrhea (any type), cough (dry or wet) worse at night, low grade fevers, fetid breath, painless periorbital swelling in AM, rarely facial pain
Clinical Presentation

- **Acute Severe Rhinosinusitis**
 - usually after 10 days but may be sooner
 - high fever, purulent and copious rhinorrhea, periorbital swelling, facial pain, headaches, dental pain

<table>
<thead>
<tr>
<th>Symptoms and Signs of Pediatric Rhinosinusitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsevere Acute Rhinosinusitis</td>
</tr>
<tr>
<td>Rhinorrhea (of any quality)</td>
</tr>
<tr>
<td>Nasal congestion</td>
</tr>
<tr>
<td>Cough</td>
</tr>
<tr>
<td>Headache, facial pain, and irritability (variable)</td>
</tr>
<tr>
<td>Low-grade or no fever</td>
</tr>
</tbody>
</table>
Diagnosis

- **History**

- **Physical Examination**
 - anterior rhinoscopy with otoscope
 - oropharynx
 - tenderness over sinuses
 - periorbital edema and discoloration
 - flexible and rigid endoscopy in older child
 - most specific-- mucopurulence, periorbital swelling, facial tenderness
Diagnosis

- Transillumination -- no value
- Ultrasonography -- little value
- Radiography
 - traditional views Water’s, Caldwell, Lateral, and Submentovertex
 - problems: ethmoids, disease findings, underdeveloped sinuses
Diagnosis
Diagnosis
Diagnosis

◆ Radiography
 – McAlister: compared radiographs with CT -- 45% normal X-ray but abnormal CT
 – 34% abnormal x-ray but normal CT
 – Not useful for uncomplicated rhinosinusitis
 – Uses in complicated acute rhinosinusitis
 » with AFL -- 75% positive isolates
Diagnosis
Diagnosis

- Computed tomography
 - gold standard
 - planning surgery or failed medical management
 - Indications
 » Clinical unresponsiveness to medical therapy
 » Immunosuppressed patient
 » Severe symptoms or signs
 » Life threatening complications
Diagnosis

- Sinus Aspirate
 - indications same for CT scanning
 - nasal, oral, nasopharyngeal cultures poor
 - needs cooperative patient -- usually GETA
 - middle meatal cultures?
Microbiology

- Similar to adults
- \textit{Streptococcus pneumoniae, Moraxella catarrhalis, nontypeable Hemophilus influenzae}
- Rare viruses, anaerobes, \textit{Staphylococcus}
- Normal flora in the sinus -- controversy

\begin{table}[h]
\centering
\begin{tabular}{|l|c|}
\hline
\textbf{Organism} & \textbf{Prevalence (\%)} \\
\hline
\textit{Streptococcus pneumoniae} & 25-30 \\
\textit{Moraxella (Branhamella) catarrhalis} & 15-20 \\
\textit{Hemophilus influenzae} & 15-20 \\
\textit{Streptococcus pyogenes} & 2-5 \\
Anaerobes & 2-5 \\
Sterile & 20-35 \\
\hline
\end{tabular}
\caption{Bacteriology of Acute Sinusitis}
\end{table}
Medical Management

- Historically -- aspiration and irrigation
- Antibiotics -- viral URI common and increasing numbers of drug resistant bacteria
 - 40-60% sinusitis episodes resolve (AOM)
 - 35% of S. pneumoniae penicillin-resistant
 - 16% of S. pneumoniae penicillin-intermediate
 - rapid cure, prevent complications, prevent chronic sinusitis, sterilize sinus
Medical management of pediatric sinusitis

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>40 mg/kg/day in equally divided doses</td>
</tr>
<tr>
<td>Amoxicillin-potassium clavulanate (Augmentin)</td>
<td>40/10 mg/kg/day in 3 divided doses</td>
</tr>
<tr>
<td>Erythromycin-sulfisoxazole (Pediazoze)</td>
<td>50/150 mg/kg/day in 4 divided doses</td>
</tr>
<tr>
<td>Sulfamethoxazole-trimethoprim (Sulfa or Bactrim)</td>
<td>40/8 mg/kg/day in divided doses</td>
</tr>
<tr>
<td>Cefuroxime axetil (Ceftin)</td>
<td>30 mg/kg/day in 2 divided doses</td>
</tr>
<tr>
<td>Cefprozil (Cefzil)</td>
<td>30 mg/kg/day in 2 divided doses</td>
</tr>
<tr>
<td>Cefixime (Suprax)</td>
<td>8 mg/kg/day in 1 dose or 2 divided doses</td>
</tr>
<tr>
<td>Cefpodoxime proxetil (Vantin)</td>
<td>10 mg/kg/day in 2 divided doses</td>
</tr>
<tr>
<td>Loracarbef (Lorabid)</td>
<td>30 mg/kg/day in 2 divided doses</td>
</tr>
<tr>
<td>Clindamycin (Cleocin)</td>
<td>30 mg/kg/day in 4 divided doses</td>
</tr>
<tr>
<td>Clarithromycin (Biaxin)</td>
<td>15 mg/kg/day in 2 divided doses</td>
</tr>
<tr>
<td>Azithromycin (Zithromax)</td>
<td>10 mg/kg/day in 1 loaded dose</td>
</tr>
</tbody>
</table>
Medical Management

Acute Nonsevere Rhinosinusitis (no ABX)

- Amoxicillin (45-90 mg/kg/day), amoxicillin/clavulanate, cefpodoxime, or cefuroxime
- 10 to 14 day course
- PCN-allergic may receive azithromycin, clarithromycin, erythromycin, or TMP/SMX but limited effectiveness (25% failure rate)
Medical Management

- Acute nonsevere rhinosinusitis (with ABX)
 - Acute severe rhinosinusitis (no ABX)
 - Amoxicillin/clavulanate, high dose amoxicillin (80-90 mg/kg/day), cefpodoxime, or cefuroxime
- Acute severe rhinosinusitis (with ABX)
 - Amoxicillin/clavulanate or combination therapy (amoxicillin or clindamycin plus cefpodoxime or cefixime)
Medical Management

- Complications or severe illness
 - IV cefotaxime or ceftriaxone plus clindamycin

- Chronic Rhinosinusitis
 - beta lactam stable agent (amoxicillin/clavulanate or combination therapy) for 3-6 weeks
Medical Management

<table>
<thead>
<tr>
<th>Agent</th>
<th>Susceptible breakpoint (µg/mL)</th>
<th>S pneumoniae (all)</th>
<th>Penicillin-susceptible S pneumoniae (n = 973)</th>
<th>Penicillin-intermediate S pneumoniae (n = 264)</th>
<th>Penicillin-resistant S pneumoniae (n = 503)</th>
<th>H Influenzae (n = 1919)</th>
<th>M catarrhalis (n = 204)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-dose Amoxicillin³</td>
<td>4/−</td>
<td>94.2/−</td>
<td>100/100</td>
<td>100/100</td>
<td>79.7</td>
<td>61.1</td>
<td>13.7</td>
</tr>
<tr>
<td>Amoxicillin/clavulanate</td>
<td>2/2¹</td>
<td>90.2/90.2</td>
<td>100/100</td>
<td>100/100</td>
<td>65.6/65.6</td>
<td>97.0</td>
<td>100</td>
</tr>
<tr>
<td>High-dose amoxicillin/clavulanate²</td>
<td>4/1−</td>
<td>94.3/−</td>
<td>100/100</td>
<td>100/100</td>
<td>80.1</td>
<td>99.6</td>
<td>100</td>
</tr>
<tr>
<td>Cefactor</td>
<td>0.5/1</td>
<td>27.4/46.0</td>
<td>47.3/77.5</td>
<td>7.4/18.7</td>
<td>0.2/0.4</td>
<td>2.3</td>
<td>5.4</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>1/0.5</td>
<td>57.3/52.1</td>
<td>95.3/90.0</td>
<td>28.5/14.4</td>
<td>0.4/0.2</td>
<td>99.9</td>
<td>100</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>0.5/0.5</td>
<td>63.0/63.0</td>
<td>100/100</td>
<td>48.2/48.2</td>
<td>0/0</td>
<td>99.9</td>
<td>64.1</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>1/2</td>
<td>64.2/67.4</td>
<td>99.2/99.6</td>
<td>57.7/75.4</td>
<td>0.4/0.8</td>
<td>18.2</td>
<td>6.4</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>1/1</td>
<td>64.8/64.8</td>
<td>99.8/99.8</td>
<td>59.9/59.9</td>
<td>0/0</td>
<td>79.6</td>
<td>37.3</td>
</tr>
<tr>
<td>Loracarbef</td>
<td>0.5/2</td>
<td>9.2/59.5</td>
<td>15.8/98.2</td>
<td>3.5/31.7</td>
<td>0/0</td>
<td>9.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.12/0.5</td>
<td>67.0/67.7</td>
<td>93.9/94.5</td>
<td>51.1/52.8</td>
<td>23.9/24.5</td>
<td>0.2</td>
<td>100</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.25/0.25</td>
<td>67.8/67.8</td>
<td>94.6/94.6</td>
<td>53.2/53.2</td>
<td>24.5/24.5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.25/0.25</td>
<td>67.5/67.5</td>
<td>94.3/94.3</td>
<td>51.8/51.8</td>
<td>24.5/24.5</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>−0.25/−</td>
<td>−89.2/−</td>
<td>−98.5</td>
<td>−84.9</td>
<td>−73.8</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.25/−</td>
<td>76.1/−</td>
<td>96.4</td>
<td>74.6/−</td>
<td>45.3/−</td>
<td>20.2</td>
<td>96.6</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>2/2</td>
<td>99.8/99.8</td>
<td>99.6/99.6</td>
<td>100/100</td>
<td>100/100</td>
<td>100</td>
<td>99.8</td>
</tr>
<tr>
<td>TMP/SMX</td>
<td>−0.5/1</td>
<td>−156.9</td>
<td>−86.0</td>
<td>−42.6</td>
<td>−8.8</td>
<td>75.5</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Medical Management

- Antihistamines -- dry mucosal secretions
- Isotonic saline nose drops, sprays, irrigations, and steam inhalations -- anecdotal
- Topical decongestants -- inhibits cilial motion
- Nasal steroids
- Mucolytics
Medical management

- Recalcitrant rhinosinusitis
 - allergy
 - immunodeficiency
 - cystic fibrosis
 - ciliary dismotility disorders
 - gastroesophageal reflux disease
Surgical Management

- **Adenoidectomy**
 - nasal obstruction and symptoms
 - small size of trials

- **Septoplasty**
 - rare to have significant septal deviation

- **Antral aspiration and lavage**
 - indications same as sinus aspiration
 - only treats maxillary sinus
 - need GETA
Surgical Management

- Caldwell-Luc -- damages dentition
- Inferior antrostomy
 - goes against proven cilial outflow
 - possible for cilial dismotility/CF
- FESS
 - controversial -- difficult, too radical (AOM), reversible changes on CT
Surgical Management

◆ FESS

– excellent results: 71% normal at one year, meta analysis 89% success with 0.6% complications
– usually maxillary antrostomy/anterior ethmoidectomy
Surgical Management

◆ FESS (absolute)
 – complete nasal obstruction in CF
 – antrochoanal polyp
 – intracranial or orbital complications
 – mucocoeles or mucopyocoeles
 – traumatic injury in optic canal
 – resistant dacryocystorhinitis
 – fungal sinusitis
 – some meningoencephaloceles/neoplasms
Surgical Management

✦ FESS (possible)
 – persistent chronic rhinosinusitis that fails optimum medical treatment and after exclusion of systemic disease
 – asthmatic exacerbations associated with rhinosinusitis
Complications

◆ Routes of spread
 – arterial
 – venous
 – lymphatic
 – direct
Complications

◆ Stage I

- periorbital inflammatory edema
- obstruction of venous channels
- no vision loss
- no EOM limitation
Complications

◆ Stage II
 – orbital cellulitis with edema, chemosis, proptosis, pain
 – no abscess
 – ophthalmplegia may occur due to edema or spasm
 – no visual loss
Complications

◆ Stage III
 - subperiosteal abscess
 - globe displaced laterally or downward
 - orbital cellulitis present with decreased EOM
 - vision decreased
Complications

◆ Stage IV
 – orbital abscess
 – severe proptosis and chemosis
 – usually no globe displacement
 – opthalmoplegia present
 – visual loss (13%) due to ischemia or neuritis
Complications

- Stage V
 - cavernous sinus thrombosis
 - progressive symptoms
 - proptosis and fixation
 - CN II, IV, VI
 - meningitis
 - high mortality
Complications

- History an physical examination
- Ophthalmology consultation
- IV antibiotics (ceftriaxone plus metronidazole and oxacillin)
- CT scan
- Surgery -- abscess, worsening vision, progression, persistent after 24 hours
 - external, FESS, frontal sinus trephine
Complications

◆ Intracranial -- meningitis, subdural or epidural abscess, cerebral abscess, CST
 – neurosurgery, ophthalmology, ID
Allergy and Rhinosinusitis

- Allergy estimated at 15-30% of population
- Major contributing factor in rhinosinusitis
- Similar pathogenesis as viral etiology with obstruction -- mucostasis -- hypoxia -- colonization
Allergy Diagnosis

- History is critical
 - itching mucous membranes, clear rhinorrhea, eczema, food intolerance, nasal congestion, stuffiness, fluctuating rhinorrhea, sneezing, cough, behavioral changes, headaches, facial pressure
 - prior history of infantile colic, formula changes, otitis media, ADHD
Allergy Diagnosis

Physical Examination
- allergic shiners and allergic salute
- nasal obstruction with cracked lips
- rash over cheeks or urticaria
- eczema
- posterior pharyngeal lymphoid tissue
- ETD
Allergy Diagnosis

- Clinical diagnosis
- Two to four week food diary
- Open feeding challenge
- RAST testing -- poor for food allergy
- Nasal smear analysis
- Skin testing
Allergy Treatment

◆ Avoidance
 – clean, allergy proof house, filter, no pets, air conditioning

◆ Pharmacotherapy
 – antihistamines, nasal steroids, mast cell stabilizers

◆ Immunotherapy
Asthma and Rhinosinusitis

- URI’s including rhinosinusitis may be trigger for asthmatic outbreaks
 - cause-effect not proven
- Rachelefsky found strong correlation with resolution of sinus disease on ability to stop bronchodilator therapy
- Friedman showed improvements in PFT’s with resolution of rhinosinusitis in small group
- Oliveria demonstrated bronchial hyperreactiveness was improved with treating rhinosinusitis
Asthma and Rhinosinusitis

- Numerous studies document improvement in controlling asthma symptoms and reducing asthma medications in patients treated surgically.
- Research not proven to assess if rhinosinusitis is etiologic factor for asthma or simply an exacerbating condition.
Case Presentation