Pediatric Syndromes of Head and Neck

Murtaza Z. Kharodawala, MD
Faculty Advisor: Matthew Ryan, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation,
November 17, 2004
More than 3,000 syndromes classified
Optimal growth, development, and learning requires early recognition and intervention

Team Approach:
- Parents
- Pediatrician
- Otolaryngologist
- Cardiologist
- Nephrologist
- Geneticist
- Speech Therapist
- Teachers
- Others
The Sydromal Child

• History
 - Parental factors (age)
 - Consanguinity
 - Abortions
 - Teratogen exposure
 - Medical Pedigree
Physical Exam

- Major and Minor Anomalies
 - Airway
 - Skull
 - Ears
 - Facial skeleton
- Comparison to Family Members
- Reference Material
Down Syndrome
Velocardiofacial Syndrome
Branchio-Otorenal Syndrome
Treacher-Collins Syndrome
Crouzon and Apert Syndrome
Pierre Robin Sequence
CHARGE Association
Down Syndrome
Described by John Landon Down in 1866

Etiology: nondisjunction mutation resulting in Trisomy 21

Prevalence 1:700

- Most common chromosomal anomaly

Associated with Maternal age > 35
Down Syndrome

- Facial Characteristics
 - Macroglossia
 - Micrognathia
 - Midface hypoplasia
 - Flat occiput
 - Flat nasal bridge
 - Epicanthal folds
 - Up-slanting palpebral fissures
 - Progressive enlargement of lips
Down Syndrome

Airway Concerns

Due to midface hypoplasia, the nasopharynx and oropharynx dimensions are smaller.

- Slight adenoid hypertrophy can cause upper airway obstruction.
- Congenital mild-moderate subglottic narrowing not uncommon.
- Post-extubation stridor.

Down Syndrome
• Obstructive Sleep Apnea
 – Prevalence 54-100% in DS patients
 – Combination of anatomic and functional mechanisms
 • Midface hypoplasia, macroglossia, etc
 • Hypotonia of pharyngeal muscles
Obstructive Sleep Apnea

Management:

- Polysomnography to confirm
- Medical interventions:
 - CPAP
 - Weight Loss
 - Medications to stimulate respiratory drive
Obstructive Sleep Apnea

Management:

- Surgical
 - Adenoidectomy and Tonsillectomy
 » Controversial
 - UPPP
 - Partial tongue resection
 - Tracheotomy

Down Syndrome
Otologic Concerns
- Small pinna, Stenotic EAC
 - Cerumen impaction
- CHL
 - ETD: PE tubes
 - Ossicular fixation: surgical correction
- SNHL
 - Progressive ossification along outflow pathway of basal spiral tract
• Cardiovascular anomalies (40%)
 – ASD, VSD, Tetralogy of Fallot, PDA
• GI anomalies (10-18%)
 – Pyloric stenosis, duodenal atresia, TE fistula
• Malignancy
 – 20 fold higher incidence of ALL
 – Gonadal tumors

Down Syndrome
Velocardiofacial Syndrome
First described by Shprintzen et al. in 1978

Not uncommon
- Prevalence 1 in every 4,000 newborns
- 8% of all cleft palate patients

Autosomal Dominant inheritance
- Hemizygous microdeletion shared with DiGeorge Sequence at 22q11.2 locus

Features
- Cleft palate
- Congenital heart disease
- Characteristic facies
- Hypernasal speech
- Learning disabilities
Oropharyngeal Findings:

- Apparent cleft palate (10-35%)
- Submucous cleft (33%)
- Submucous cleft and velar paresis (33%)
- Tonsils small or aplastic (50%)
- Adenoids small or aplastic (85%)
- Malocclusion
- Hypernasal speech
Airway Obstruction is common
- 50% of neonates with VCFS have OSA
- Adenotonsillectomy should be avoided if not indicated
- Oral airway needed in urgent setting
- Cleft palate repair required
Facial Findings:

- Maxillary excess
- Malar flatness
- Facial asymmetry
- Long philtrum
- Thin upper lip

Nasal Findings:
- Prominent nasal root
- Large tip
- Pinched, hypoplastic alar base

• **Ear findings**
 - Small auricles (48%)
 - CHL secondary to serous effusions and ETD (75%)
 • PE tubes effective
 - SNHL (8%)
 • Amplification devices
Cardiovascular Findings

- 75-80% with cardiac anomalies
- 10% of patients with VCFS die in early infancy due to these anomalies
- VSD (65%)
- Right sided aortic arch (35%)
- Tetralogy of Fallot (20%)
- Aberrant subclavian artery (20%)
VCFS

MRA:
Tortuous and medially deviated internal carotid artery

• Growth and mental retardation
• Flat affect and poor social interaction with impulsive behavior
• Renal anomalies in 35%
• T cell dysfuction in 10% with hypocalcemia

VCFS
Branchio-Otorenal Syndrome
BORS

- First termed by Melnick et al in 1975
- 1 in every 40,000 births
- Autosomal dominant inheritance
 - Isolated to 8q13.3 locus
- Characteristics:
 - Branchial cleft cysts or fistulas
 - Preauricular pits
 - Malformed auricles
 - Hearing loss
 - Renal anomalies
• Branchial cleft cysts and fistulas
 – Present in 50-60% of cases
 – Usually bilateral
 – Found in lower third of neck
 – Fistulas may connect to tonsillar fossa
• Facial nerve paralysis (10%)
• Aplasia or stenosis of lacrimal duct (25%)
- **External ear anomalies**
 - Auricular malformation (30-60%) or abnormal position
 - Minor aberration of anatomy to severe microtia
 - Helical or preauricular pits (70-80%)
- **Middle ear anomalies**
 - Malformation and/or fixation of ossicles
 - Abnormal size/structure of the tympanic cavity
• Inner ear anomalies (rare)
 – Dilated vestibule and/or endolymphatic duct/sac
 – Bulbous internal auditory canal
 – Small semicircular canals
 – Hypoplastic cochlea
• Mondini

• Hearing loss (75-95%)
 – CHL (30%)
 – SNHL (20%)
 – MHL (50%)
Renal anomalies (12-20\%)

- Likely underreported when a disease process not involved
- Renal agenesis or hypoplasia
- Structural anomalies of renal pelvis or ureters
• **Diagnosis and Treatment**
 – History and Physical Examination
 – Audiogram, CT temporal bones
 – CT neck
 – Renal Ultrasound, IVP
• **Diagnosis and Treatment**
 - Surgical excision of branchial cleft cyst, sinus, or fistula
 - Otoplasty
 - Excision of pits
 - Possible ossicular chain reconstruction
 - Hearing aids
 - Urology consultation for renal anomalies
Treacher Collins Syndrome
• First described by Thomson and Toynbee in 1846-7
 – Later, essential components described by Treacher Collins in 1960
• Autosomal dominant inheritance
 – TCOF1, mapped to 5q32-33.1
• 60% are from new mutation
 – Associated with increased paternal age
• Prevalence of 1 in 50,000
• a.k.a. Mandibulofacial dysostosis
Characteristics

- Likely due to abnormal migration of neural crest cells into first and second branchial arch structures
- Usually bilateral and symmetric
- Malar and supraorbital hypoplasia
- Non-fused zygomatic arches
- Cleft palate in 35%
- Hypoplastic paranasal sinuses
- Downward slanting palpebral fissures
- Mandibular hypoplasia with increased angulation
- Coloboma of lower eyelid with absent cilia
- Malformed pinna
- Normal intelligence
OP/Airway concerns

- Cleft palate
- Choanal atresia may be present
 - Respiratory distress in newborn
 - Oral airway, McGovern nipple
- Obstructive sleep apnea is the most common airway dysfunction
 - Mandibular hypoplasia results in retrodisplacement of tongue into oropharynx
 - Oral airway, tracheotomy
 - Distraction osteogenesis vs. free fibular transfer
• **Otologic concerns**
 – Malpositioned auricles
 – Malformed pinna
 – EAC atresia
 – Ossicular abnormalities
 – Conductive hearing loss is common
 • Hearing aids are effective
 – Normal intelligence
Apert and Crouzon Syndromes
• Belong to family of Craniosynostoses
• Apert Syndrome (Acrocephalosyndactyly)
 – First described by Wheaton in 1894
 – Apert further expanded in 1906
• Crouzon Syndrome (Craniofacial Dysostosis)
 – Described by Crouzon in 1912
• Autosomal dominant inheritance
 – Most are sporadic in Apert Syndrome
 – 1/3 are sporadic in Crouzon Syndrome
• Prevalence: 15 - 16 per 1,000,000
Apert and Crouzon

- **Typical characteristics**
 - **Craniosynostosis**
 - Coronal sutures fused at birth
 - Larger than average head circumference at birth
 - Midfacial malformation and hypoplasia
 - Shallow orbits with exophthalmos
 - Apert Syndrome: symmetric syndactyly of hands and feet
Apert and Crouzon

Crouzon and Apert Syndromes facial features

- Shallow orbits with exophthalmos
- Retruded midface with relative prognathism
- Beaked nose
- Hypertelorism
- Downward slanting palpebral fissures
• **Airway concerns**
 – Reduced nasopharyngeal dimensions and choanal stenosis
 – OSA
 – Cor pulmonale
• **Polysomnography**
• **Treatment**
 – Adenoidectomy
 – Endotracheal intubation
 – Tracheotomy
Apert and Crouzon

- **Otologic concerns**
 - CHL resulting from ETD
 - Congenital fixation of stapes footplate in Apert syndrome
- **Treatment**
 - Ventilation tubes
 - Stapedectomy or OCR
- **Fronto-Orbital advancement**
 - Brain growth and expansion of cranial vault, orbital depth
- **Orthodontics**
 - Maxillary teeth abnormalities
 - Crossbite
Apert and Crouzon

Fronto-Orbital Advancement Surgery

Syndactyly reconstruction in Apert Syndrome

Pierre Robin Sequence
• Triad of micrognathia, glossoptosis and cleft palate
 – First described by St. Hilaire in 1822
 – Pierre Robin first recognized the association of micrognathia and glossoptosis in 1923

• Prevalence: 1 of every 8,500 newborns
 – Syndromic 80%
 • Treacher Collins Syndrome
 • Velocardiofacial Syndrome
 • Fetal Alcohol Syndrome
 – Nonsyndromic 20%
Mandibular Deficiency

- Hypoplastic and Retrused Mandible (Micrognathia)

Tongue Remains Retrused and High in Oropharynx (Glossoptosis)

Cleft Palate

- Failure of Fusion of Lateral Palatal Shelves
• Airway Obstruction
 – Anatomic and Neuromuscular Components
 • Micrognathia, Retruded Mandible
 • Glossoptosis
 • Impaired Genioglossus and Parapharyngeal Muscles
Airway Management

- Temporizing Modalities
 - Prone Positioning
 - Nasopharyngeal Airway
 - NG tube and gavage feeds
 - Mandibular Traction Devices
 - Tongue Lip Adhesion
- Tracheotomy
- Distraction Osteogenesis
• Otologic Concerns
 – 80% have bilateral CHL
 – Eustachian Tube Dysfunction
 – Serous Otitis Media
 – Placement of Ventilation Tubes is Effective
CHARGE Association
- Colobomas
- Heart Abnormalities
- Atresia Choanae
- Growth/Mental Retardation
- Genitourinary Anomalies
- Ear Abnormalities
Proposed by Pagon et al in 1981
Incidence unknown
Associated with paternal age > 34
Head and Neck anomalies:

- Coloboma
- Choanal Atresia
- External Ear Abnormalities
- Facial Nerve Palsy
- Laryngomalacia
- OSA
- GERD
- Mondini Malformation
- Semicircular Canal Hypoplasia
- Vocal Cord Paresis
Coloboma

- Failure of fusion of embryonic (choroidal) fissure
 - Optic nerve, inferior nasal fundus, or inferior iris may be involved
- Redundant tissue of upper or lower eyelid lacking skin appendages

Choanal Atresia

- Prevalence: 1/5000 to 1/8000
- Females/Males: 2/1
- Unilateral 65-75%
- 75% with Bilateral have CHARGE, or other syndromes

Choanal Atresia

- Neonates are obligate nasal breathers
- Mouth breathing is a learned response, developed at 4-6 weeks
- Bilateral CA presents at birth with respiratory distress and cyanosis, relieved with crying
- Unilateral CA usually presents later in life with chronic nasal discharge
Choanal Atresia

- **Diagnosis:**
 - 6 French catheter
 - Nasal endoscopy
 - Bell of Stethoscope
 - Mirror

- **Radiology**
 - CT (preferred method)
Choanal Atresia

- **Treatment:**
 - Unilateral CA does not require immediate correction
 - May be delayed until starting school
 - Bilateral CA requires immediate interventions:
 - Oral Airway
 - McGovern Nipple
 - Intubation
 - Tracheostomy
Choanal Atresia

- Surgical Correction:
 - Transnasal
 - Transpalatal
 - Laser
 - +/- Stenting
 - +/- Mitomycin-C Topical (0.3 mg/cc)

