Medical Management of Chronic Rhinosinusitis

Jean Paul Font, MD
Faculty Advisor: Matthew Ryan, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
May 2006
Outline

- Anatomy, epidemiology & definition
- Diagnosis
- Predisposing factors
- Role of allergy
- Treatment strategies
 - Etiology
 - Inflammatory response
Anatomy of the sinus

Osteomeatal Complex
Rhinosinusitis
Epidemiology

- Affects 14% of the U.S. adults (national census data)
- The American Academy of Otolaryngology (AAO) reports a direct health care costs of $3.4 billion / year
- Top ten diagnosis associated with loss of productivity
- 18 to 22 million US physician office visits annually
Rhinosinusitis Definition

- AAO definition - Defined as an inflammation of the nose and sinuses
- *Rhinosinusitis*
 - Include nasal airway inflammation (Rhinitis)
Rhinosinusitis Symptoms

- A rhinosinusitis task force in 1997
- "major" criteria
 - facial pain
 - nasal obstruction
 - Hyposmia
 - purulence on examination
 - fever
- "minor" criteria
 - Headache
 - Fatigue
 - dental pain
 - cough
Classification by Duration of Symptoms

- **ACUTE** – lasting up to 4 weeks, with total resolution of symptoms

- **SUBACUTE** – persisting more than 4 weeks, but less than 12 weeks, with total resolution of symptoms

- **CHRONIC** – 12 weeks or more of signs / symptoms

- **RECURRENT ACUTE** – 4 or more episodes per year, with resolution of symptoms between attacks
Chronic rhinosinusitis (CRS)

- Symptom-based diagnosis may be unreliable
- Patient with “sinus all the time,” chronic headache and facial “pressure,” plus “stopped up” nose; has had “innumerable” courses of antibiotics and 3 sinus operations by 2 different physicians
- Computed tomography is the gold standard
Predisposing Factors In Chronic rhinosinusitis (CRS)

- **Host Factors**
 - **Systemic**
 - Allergic rhinitis
 - Immunodeficiency
 - IgG subclasses
 - IgA
 - Genetic/congenital
 - cystic fibrosis, ciliary dyskinesia
 - **Local**
 - Anatomic obstruction
 - Gastroesophageal reflux

- **Enviromental factors**
 - Microorganisms
 - viral illness (children in daycare)
 - Pollutants
 - cigarette smoke
 - Medications
 - Rhinitis medicamentosa
Possible Strategies for Treating CRS

Treat Etiology
- Allergen Avoidance
- Antibiotics
- Surgery

Attenuate Inflammation
- Steroids
- Immunotherapy
- Antileukotrienes
- Macrolides
- Who knows what else?

Infectious
- IL-5, IL-4
- IL-8, IF-\(\gamma\)
- GM-CSF

Anatomic
Sinus ventilation and drainage

- Oral hydration
- Saline sprays
- Humidification
- Decongestants
- Mucolytics
Allergies in CRS

- Most common predisposing factor in adults
- Second most common in children (after viral URI)
- Allergic rhinitis leads to mucosal inflammation and hypertrophy blocking the ostiomeatal complex
Management of allergies

- Allergen avoidance
 - history or positive skin prick tests
- Saline irrigation
- Antiinflammatory therapy
- Antihistamine
- *Leukotriene Receptor Antagonists*
- Decongestant
Saline irrigation

- Increase mucociliary flow rates
- Brief vasoconstrictive effect
- Mechanically rinse
- Adding baking soda
 - Alkaline medium leads to thinning of mucus
 - An acidic medium creates a more viscous (gel) mucus
Mucolytics

- Guaifenesin
 - High doses are required for obtaining an effect on mucous
 - Emesis and abdominal pain
- Wawrose 1992
 - Significant improvement of nasal congestion in patients with AIDS and low CD4 counts
Antihistamine

- Inhibition of histamine receptor
- Ineffective in relieving chronic nasal congestion
- First-generation antihistamines
 - Anticholinergic
 - adverse effects such as drowsiness
 - Leads to drying of secretions
Second-generation antihistamines

- Higher affinity to histamine receptors and increased potency
- No anticholinergic effect
- Cetirizine
 - Block other mediator release such as that of leukotrienes and kinins
 - Inhibit monocyte and lymphocyte chemotaxis
 - Beneficial in the treatment of chronic congestion
Leukotriene

- More potent than histamine in triggering nasal allergic inflammation

- *Leukotriene Receptor Antagonists*
 - Effective in allergic rhinitis
 - Beneficial effects for the indication of chronic rhinosinusitis
Corticosteroid

- **Inmunomodulator**
 - Stabilize mast cells
 - Block formation of inflammatory mediators
 - Inhibit chemotaxis of inflammatory cells

- **Short courses of systemic corticosteroids**
 - Tx severe nasal mucosal congestion in allergic patients
Corticosteroid

- Contraindications
 - Diabetes
 - Peptic ulcer disease
 - Glaucoma
 - Severe hypertension
 - Advanced osteoporosis
Topical corticosteroids

- Improve patency of the ostiomeatal complex
 - reduction in mucosal swelling
- Inhibit both immediate and late-phase reactions to antigenic stimulation (After 7 days of treatment)
- 90% of patients with allergic rhinitis will experience improvement
Topical corticosteroids

- Common adverse effects
 - nasal irritation, mucosal bleeding, and crusting
 - propylene glycol contained in the preparations

- Alleviated by switching to a aqueous delivery system

- Concomitant nasal saline used lessen or eliminate the adverse effects
Decongestants

- vasoconstriction of dilated mucosal blood vessels (α-adrenergic agonists)
- symptomatic relief of nasal congestion
- No therapeutic efficacy for the treatment of sinusitis
Topical Decongestants

- Phenylephrine & oxymetazoline
- Rhinometric analysis
 - Rebound vasodilation as early as 3 days
- Rhinitis medicamentosa
 - after 10 days to 2 weeks
Antibiotics in CRS

- Should be based on culture results
- Endoscopic directed culture of purulent secretions from the nasal vestibule or middle meatus correlate well with maxillary tap results
- S. aureus, Anaerobes & Gram negative
- Pseudomona Aeruginosa
Antibiotics

- **First-line**
 - amoxicillin-clavulanate
 - cephalosporin second- or third-generation

- **Second-line**
 - For adults
 - The respiratory quinolones
 - ciprofloxin, levofloxacin, gatifloxacin, and moxifloxacin
Antibiotics

- Additional and backup
 - Clarithromycin and azithromycin achieve excellent mucosal levels
 - Pneumococcal resistance to macrolides double over the past 10 years from approximately 10% to 20%
 - Clindamycin should be reserved for culture-documented resistant *S. pneumoniae*
Duration of antibiotic

- Broad-spectrum antibiotic for up to 3 weeks.
 - Improvement in symptoms within 3 to 5 days.
 - Resolution of symptoms within 7 to 10 days after first improvement.
 - Another week- to diminish mucosal edema and improve mucociliary function

- Rapid recurrence after previous treatment
 - Add 3- to 6-week course of once-daily prophylactic antibiotic therapy
Mechanisms of Antibiotic Resistance or "Bugs are smarter than us"

- **H. influenzae**
- **M. catarrhalis**
- **S. pneumoniae**

BACTERIAL CELL

- DNA
- ENZYME PRODUCTION (β-lactamase)
- EFFLUX
- ALTERED TARGET PROTEINS
- RIBOSOMES

ALTERNED PENICILLIN BINDING PROTEINS

- Macrolides
- β-lactams
- Quinolones
Macrolide

- Antiinflammatory effect
- Accumulate in inflammatory cells
 >100X higher than concentrations in extracellular fluid
Macrolide
Immunomodulator effect

- Macrolide antibiotics targets cytokine production
 - Decreased IL-5, IL-8, GM-CSF, TGF-β, IL-6, IL-8, TNF-α
- Altered structure and function of biofilm
- Reduced expression leukocyte adhesion molecules
- Accelerate neutrophil apoptosis
- Impaired neutrophil oxidative burst
- Decrease secretion and improve mucociliary clearance
- Inhibited release of elastase, protease, phospholipase C, and eotaxin A by *P aeruginosa*
Macrolide

- Long-term, low-dose macrolides for treatment of CRS (primarily in Japan)
- Clarithromycin is the macrolide most studied in CRS
- Azithromycin lack studies in CRS
- Long term use is 3-12 month
Meta-analysis of macrolides in Chronic rhinosinusitis

<table>
<thead>
<tr>
<th>Type of study</th>
<th>Dosage 24h (mg)</th>
<th>Duration (months)</th>
<th>Macrolide</th>
<th>Results</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective, randomized, controlled trial, n = 90</td>
<td>1000 (2 wk)</td>
<td>3</td>
<td>Clarithromycin</td>
<td>As effective as surgery in chronic sinusitis</td>
<td>Ragab, 2004</td>
</tr>
<tr>
<td></td>
<td>500 (10 wk)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospective, open, n = 17</td>
<td>500</td>
<td>12</td>
<td>Erythromycin</td>
<td>12 responders, mucociliary transport, headache, postnasal drip, all improved, $P < .05$</td>
<td>Cervin, 2002</td>
</tr>
<tr>
<td>Prospective, open, n = 20</td>
<td>1000</td>
<td>0.5</td>
<td>Clarithromycin</td>
<td>Improvement in CD68, IL-6, IL-8, TNF-α and clinical parameters</td>
<td>Macleod, 2001</td>
</tr>
<tr>
<td>Prospective, open, n = 20</td>
<td>400</td>
<td>3</td>
<td>Clarithromycin</td>
<td>Reduction of IL-8 in nasal lavage, decreased nasal polyp size</td>
<td>Yamada, 2000</td>
</tr>
</tbody>
</table>

Cervin et al. 2005
GERD in CRS

- Reflux reach the nasopharynx and nasal cavities leading to chronic mucosal irritation and sinusitis
- Adult patients with chronic sinusitis and a history of heartburn
 - antireflux regimen –precaution and med
- Young children the relation is more evident
 - presumably due to the closer proximity between the esophageal inlet and larynx to the soft palate and nasopharynx
 - suspected in children
 - chronic congestion
 - Rhinorrhea
 - excessive spitting up in infancy
 - low weight percentile
 - failure to thrive
 - chronic stridor
 - reactive airway disease
Viral infections

- Most common predisposing factors for sinusitis in children
- Day care important risk
 - fewest possible children to reduce viral exposure
- Prevention
 - Hand washing
- IFN a2 ($$$$$)
Conclusion

- CRS is multifactorial
- Treatment is based on pt’s predisposing factors
- Therapeutic options
 - Prevent & treat etiology
 - Reduce inflammatory response
- Surgery
 - Exhaustion of medical option
 - Certainty of diagnosis