Benign Thyroid Diseases

Alan Cowan, MD
Faculty Advisor: Shawn Newlands, MD, PhD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
May 2006
History

- **Goiter**
 - Fist described in China in 2700 BC

- **Thyroid Function**
 - Da Vinci – thyroid is designed to fill empty spaces in the neck
 - Parry – thyroid works as a buffer to protect the brain from surges in blood flow
 - Roman physicians – thyroid enlargement is a sign of puberty

- **Cures**
 - “application of toad’s blood to the neck”
 - “stroking of the thyroid gland with a cadaverous hand”
Surgical advances

- **500 AD**
 - Abdul Kasan Kelebis Abis performed the first goiter excision in Baghdad.
 - Procedure: unknown

- **1200’s AD**
 - Advancements in goiter procedures included applying hot irons through the skin and slowly withdrawing them at right angles. The remaining mass or pedicled tissue was excised.
 - Patients were tied to the table and held down to prevent unwanted movement.
 - Most died from hemorrhage or sepsis.

- **1646 AD**
 - Wilhelm Fabricus performed a thyroidectomy with standard surgical scalpels.
 - The 10 y/o girl died, and he was imprisoned

- **1808 AD**
 - Guillaume Dupuytren performed a total thyroidectomy.
 - The patient died postoperatively of “shock”
Surgical advances

1866

“...If a surgeon should be so foolhardy as to undertake it [thyroidectomy] ... every step of the way will be environed with difficulty, every stroke of his knife will be followed by a torrent of blood, and lucky will it be for him if his victim lives long enough to enable him to finish his horrid butchery.”

– Samuel David Gross
Surgical advances

1883

Kocher’s performs a retrospective review

- 5000 career thyroidectomies
- Mortality rates decreased
 - 40% in 1850 (pre-Kocher & Bilroth)
 - 12.6% in 1870’s (Kocher begins practice)
 - 0.2% in 1898 (end of Kocher’s career)
- Many patients developed cretinism or myxedema

His conclusions
Surgical advances

In presentation to the German Surgical Congress ...

“...the thyroid gland in fact had a function....”

- Theodor Kocher, 1883
Medical Advances

- **1820 AD**
 - Johann Straub and Francois Coindet found that use of seaweed (iodine) reduced goiter size and vascularity.

- **1830 AD**
 - Graves and von Basedow describe a toxic goiter condition they referred to as “Merseburg Triad” – goiter, exophthalmos, palpitations.
Thyroid Physiology
Iodine transport

- Na\(^{+}\)/I\(^{-}\) symport protein controls serum I\(^{-}\) uptake
- Based on Na\(^{+}\)/K\(^{+}\) antiport potential
- Stimulated by TSH
- Inhibited by Perchlorate
Thyroid hormone formation

- **Thyroid Peroxidase (TPO)**
 - Apical membrane protein
 - Catalyzes Iodine organification to tyrosine residues of thyroglobulin
 - Antagonized by methimazole, PTU

- **Iodine coupled to Thyroglobulin**
 - Monoiodotyrosine (Tg + one I⁻)
 - Diiodotyrosine (Tg + two I⁻)

- Pre-hormones secreted into follicular space
Wolff-Chaikoff Effect

- Increasing doses of I^- increase hormone synthesis initially.
- Higher doses cause cessation of hormone formation.
- This effect is countered by the Iodide leak from normal thyroid tissue.
- Patients with autoimmune thyroiditis may fail to adapt and become hypothyroid.
Jod-Basedow Effect

- Opposite of the Wolff-Chaikoff effect
- Excessive iodine loads induce hyperthyroidism
- Observed in hyperthyroid disease processes
 - Graves’ disease
 - Toxic multinodular goiter
 - Toxic adenoma
- This effect may lead to symptomatic thyrotoxicosis in patients who receive large iodine doses from
 - Dietary changes
 - Contrast administration
 - Iodine containing medication (Amiodarone)
Thyroid Hormone Control
TRH

- Produced by Hypothalamus
- Release is pulsatile, circadian
- Downregulated by T₃
- Travels through portal venous system to adenohypophysis
- Stimulates TSH formation
TSH

- Produced by Adenohypophysis Thyrotrophs
- Upregulated by TRH
- Downregulated by T_4, T_3
- Travels through portal venous system to cavernous sinus, body.
- Stimulates several processes
 - Iodine uptake
 - Colloid endocytosis
 - Growth of thyroid gland
TSH Response

Graph showing the TSH response to TRH with different doses of T3 and T4.
Thyroid Hormone

- Majority of circulating hormone is T_4
 - 98.5% T_4
 - 1.5% T_3

- Total Hormone load is influenced by serum binding proteins
 - Albumin 15%
 - Thyroid Binding Globulin 70%
 - Transthyretin 10%

- Regulation is based on the free component of thyroid hormone
Hormone Binding Factors

- **Increased TBG**
 - High estrogen states (pregnancy, OCP, HRT, Tamoxifen)
 - Liver disease (early)

- **Decreased TBG**
 - Androgens or anabolic steroids
 - Liver disease (late)

- **Binding Site Competition**
 - NSAID’s
 - Furosemide IV
 - Anticonvulsants (Phenytoin, Carbamazepine)
Thyroid Evaluation

- TRH
- TSH
- Total T_3, T_4
- Free T_3, T_4
- RAIU
- Thyroglobulin
- Antibodies: Anti-TPO, Anti-TSHr
Thyroid Evaluation

Figure 118-2. Algorithm for using the TSH level in the evaluation of thyroid function.
RAIU

- Scintillation counter measures radioactivity after I^{123} administration.

- Uptake varies greatly by iodine status
 - Indigenous diet (normal uptake 10% vs. 90%)
 - Amiodarone, Contrast study, Topical betadine

- Elevated RAIU with hyperthyroid symptoms
 - Graves’
 - Toxic goiter

- Low RAIU with hyperthyroid symptoms
 - Thyroiditis (Subacute, Active Hashimoto’s)
 - Hormone ingestion (Thyrotoxicosis factitia, Hamburger Thyrotoxicosis)
 - Excess I^- intake in Graves’ (Jod-Basedow effect)
 - Ectopic thyroid carcinoma (Struma ovarii)
Iodine states

- Normal Thyroid
- Inactive Thyroid
- Hyperactive Thyroid
Common Thyroid Disorders
Goiter

- **Goiter**: Chronic enlargement of the thyroid gland not due to neoplasms
- **Endemic goiter**
 - Areas where > 5% of children 6-12 years of age have goiter
 - Common in China and central Africa
- **Sporadic goiter**
 - Areas where < 5% of children 6-12 years of age have goiter
 - *Multinodular goiter* in sporadic areas often denotes the presence of multiple nodules rather than gross gland enlargement
- **Familial**
Goiter

- **Etiology**
 - **Hashimoto’s thyroiditis**
 - Early stages only, late stages show atrophic changes
 - May present with hypo, hyper, or euthyroid states
 - **Graves’ disease**
 - Due to chronic stimulation of TSH receptor
 - **Diet**
 - Brassica (cabbage, turnips, cauliflower, broccoli)
 - Cassava
 - **Chronic Iodine excess**
 - Iodine excess leads to increased colloid formation and can prevent hormone release
 - If a patient does not develop iodine leak, excess iodine can lead to goiter
 - **Medications**
 - Lithium prevents release of hormone, causes goiter in 6% of chronic users
 - **Neoplasm**
Goiter

Pathogenesis

- Iodine deficient areas
 - Heterogeneous response to TSH
 - Chronic stimulation leads to multiple nodules
- Iodine replete areas
 - Thyroid follicles are heterogeneous in their growth and activity potential
 - Autopsy series show MNG >30%.

Thyroid function evaluation

- TSH, T4, T3
 - Overt hyperthyroidism (TSH low, T3/T4 high)
 - Subclinical hyperthyroidism (TSH low, T3/T4 normal)

Determination of thyroid state is key in determining treatment
Non-Toxic Goiter

- Cancer screening in non-toxic MNG
 - Longstanding MNG has a risk of malignancy identical to solitary nodules (<5%)
 - MNG with nodules < 1.5 cm may be followed clinically
 - MNG with non-functioning nodules > 4cm should be excised
 - No FNA needed due to poor sensitivity
 - Incidence of cancer (up to 40%)
- FNA in MNG
 - Sensitivity 85% - 95%
 - Specificity 95%
 - Negative FNA can be followed with annual US
 - Insufficient FNA’s should be repeated
 - Incocclusive FNA or papillary cytology warrants excision
- Hyperfunctioning nodules may mimic follicular neoplasm on FNA
Non-Toxic Goiter

- **Treatment options** (no compressive symptoms)
 - US follow-up to monitor for progression
 - Thyroid suppression therapy
 - May be used for progressive growth
 - May reduce gland volume up to 50%
 - Goiter regrowth occurs rapidly following therapy cessation
 - Surgery
 - Suspicious neck lymphadenopathy
 - History of radiation to the cervical region
 - Rapid enlargement of nodules
 - Papillary histology
 - Microfollicular histology (?)
Non-Toxic Goiter

Treatment options (compressive symptoms)

- RAI ablation
 - Volume reduction 33% - 66% in 80% of patients
 - Improvement of dysphagia or dyspnea in 70% - 90%
 - Post RAI hypothyroidism 60% in 8 years
 - Post RAI Graves’ disease 10%
 - Post RAI lifetime cancer risk 1.6%

- Surgery
 - Most commonly recommended treatment for healthy individuals
Toxic Goiter

- Evaluate for
 - Graves’ disease
 - Clinical findings (Pretibial myxedema, Ophthalmopathy)
 - Anti-TSH receptor Ab
 - High RAUI
 - Thyroiditis
 - Clinical findings (painful thyroid in Subacute thyroiditis)
 - Low RAUI
 - Recent Iodine administration
 - Amiodarone
 - IV contrast
 - Change in diet

- FNA evaluation
 - Not indicated in hyperthyroid nodules due to low incidence of malignancy
 - FNA of hyperthyroid nodules can mimic follicular neoplasms
Toxic Goiter

- Risks of hyperthyroidism
 - Atrial fibrillation
 - Congestive Heart Failure
 - Loss of bone mineral density
 - Risks exist for both clinical or subclinical disease

- Toxic Goiter
 - Toxicity is usually longstanding
 - Acute toxicity may occur in hyperthyroid states (Jod Basedow effect) with
 - Relocation to iodine replete area
 - Contrast administration
 - Amiodarone (37% iodine)
Toxic Goiter

Treatment for Toxic MNG

- Thionamide medications
 - **Not indicated for long-term use due to complications**
 - May be used for symptomatic individuals until definitive treatment.

- Radioiodine
 - **Primary treatment for toxic MNG**
 - Large I131 dose required due to gland size
 - Goiter size reduction by 40% within 1 year
 - **Risk of hypothyroidism** 11% - 24%
 - May require second dose

- Surgery
 - **Used for compressive symptoms**
 - **Hypothyroidism occurs in up to 70% of subtotal thyroidectomy patients**
 - Pre-surgical stabilization with thionamide medications
 - Avoid SSKI due to risk for acute toxic symptoms
Graves’ Disease

- Most common cause of thyrotoxicosis in the industrialized world
- Autoimmune condition with anti-TSHr antibodies
- Onset of disease may be related to severe stress which alters the immune response
- Diagnosis
 - TSH, T₄, T₃ to establish toxicosis
 - RAIU scan to differentiate toxic conditions
 - Anti-TPO, Anti-TSAb, fT₃ if indicated

<table>
<thead>
<tr>
<th>RAIU in Hyperthyroid States</th>
<th>High Uptake</th>
<th>Low Uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graves’</td>
<td></td>
<td>Subacute Thyroiditis</td>
</tr>
<tr>
<td>Toxic MNG</td>
<td></td>
<td>Iodine Toxicosis</td>
</tr>
<tr>
<td>Toxic Adenoma</td>
<td></td>
<td>Thyrotoxicosis factitia</td>
</tr>
</tbody>
</table>
Graves’ Disease

Treatment

- Beta blockers for symptoms

- Thionamide medications
 - May re-establish euthyroidism in 6-8 weeks
 - 40% - 60% incidence of disease remission
 - 20% incidence of allergy (rash, itching)
 - 0.5% incidence of potentially fatal agranulocytosis

- Radioiodine ablation
 - 10% incidence of hypothyroidism at 1 year
 - 55% - 75% incidence of hypothyroidism at 10 years
 - Avoid RAI in children and pregnancy

- Surgery
 - Large goiters not amenable to RAI
 - Compressive symptoms
 - Children, pregnancy
 - 50% - 60% incidence of hypothyroidism
Toxic Adenoma

- **Thyrotoxicosis**
 - Hyperfunctioning nodules <2 cm rarely lead to thyrotoxicosis
 - Most nodules leading to thyrotoxicosis are >3 cm.

- **Treatment Indications**
 - Post-menopausal female
 - Due to increased risk of bone loss
 - Patients over 60
 - Due to high risk of atrial fibrillation
 - Adenomas greater than 3 cm (?)
Toxic Adenoma

Treatments

- **Antithyroid medications**
 - Not used due to complications of long-term treatment

- **Radioiodine**
 - Cure rate > 80% (20 mCi I131)
 - Hypothyroidism risk 5% - 10%
 - Second dose of I131 needed in 10% - 20%
 - Patients who are symptomatically toxic may require control with thionamide medications before RAI to reduce risk of worsening toxicity.

- **Surgery**
 - Preferred for children and adolescents
 - Preferred for very large nodules when high I131 doses needed
 - Low risk of hypothyroidism

- **Ethanol Injection**
 - Rarely done in the US
 - May achieve cure in 80%
Hypothyroidism

- Symptoms – fatigability, coldness, weight gain, constipation, low voice
- Signs – Cool skin, dry skin, swelling of face/hands/legs, slow reflexes, myxedema
- Newborn – Retardation, short stature, swelling of face/hands, possible deafness
- Types of Hypothyroidism
 - Primary – Thyroid gland failure
 - Secondary – Pituitary failure
 - Tertiary – Hypothalamic failure
 - Peripheral resistance
Hypothyroidism

- Cause is determined by geography
 - Hashimoto’s in industrialized countries
 - May be due to iodine excess in some coastal areas

- Diagnosis
 - Low FT₄, High TSH (Primary, check for antibodies)
 - Low FT₄, Low TSH (Secondary or Tertiary, TRH stimulation test, MRI)

- Treatment
 - Levothyroxine (T₄) due to longer half life
 - Treatment prevents bone loss, cardiomyopathy, myxedema
Hypothyroidism

- Agenesis
- Thyroid destruction
 - Hashimoto’s thyroiditis
 - Surgery
 - I_{131} ablation
 - Infiltrative diseases
 - Post-laryngectomy
- Inhibition of function
 - Iodine deficiency
 - Iodine administration
 - Anti-thyroid medications (PTU, Methimazole, Lithium, Interferon)
 - Inherited defects
- Transient
 - Postpartum
 - Thyroiditis
Hashimoto’s (Chronic, Lymphocytic)

- Most common cause of hypothyroidism
- Result of antibodies to TPO, TBG
- Commonly presents in females 30-50 yrs.
- Usually non-tender and asymptomatic
- Lab values
 - High TSH
 - Low T₄
 - Anti-TPO Ab
 - Anti-TBG Ab
- Treat with Levothyroxine
Thyroiditis
Hashimoto's Thyroiditis

- Most common cause of goiter and hypothyroidism in the U.S.
- Physical
 - Painless diffuse goiter
- Lab studies
 - Hypothyroidism
 - Anti TPO antibodies (90%)
 - Anti Thyroglobulin antibodies (20-50%)
 - Acute Hyperthyroidism (5%)
- Treatment
 - Levothyroxine if hypothyroid
 - Triiodothyronine (for myxedema coma)
 - Thyroid suppression (levothyroxine) to decrease goiter size
 - Contraindications
 - Stop therapy if no resolution noted
 - Surgery for compression or pain.
Silent Thyroiditis
Post-partum Thyroiditis

- Silent thyroiditis is termed post-partum thyroiditis if it occurs within one year of delivery.

- Clinical
 - Hyperthyroid symptoms at presentation
 - Progression to euthyroidism followed by hypothyroidism for up to 1 year.
 - Hypothyroidism generally resolves

- Diagnosis
 - May be confused with post-partum Graves’ relapse

- Treatment
 - Beta blockers during toxic phase
 - No anti-thyroid medication indicated
 - Iopanoic acid (Telopaque) for severe hyperthyroidism
 - Thyroid hormone during hypothyroid phase. Must withdraw in 6 months to check for resolution.
Subacute Thyroiditis
DeQuervain’s, Granulomatous

- Most common cause of painful thyroiditis
- Often follows a URI
- FNA may reveal multinucleated giant cells or granulomatous change.
- Course
 - Pain and thyrotoxicosis (3-6 weeks)
 - Asymptomatic euthyroidism
 - Hypothyroid period (weeks to months)
 - Recovery (complete in 95% after 4-6 months)
Subacute Thyroiditis
DeQuervain’s, Granulomatous

- **Diagnosis**
 - Elevated ESR
 - Anemia (normochromic, normocytic)
 - Low TSH, Elevated T4 > T3, Low anti-TPO/Tgb
 - Low RAI uptake (same as silent thyroiditis)

- **Treatment**
 - NSAID’s and salicylates.
 - Oral steroids in severe cases
 - Beta blockers for symptoms of hyperthyroidism, Iopanoic acid for severe symptoms
 - PTU not indicated since excess hormone results from leak instead of hyperfunction
 - Symptoms can recur requiring repeat treatment
 - Graves’ disease may occasionally develop as a late sequellae
Acute Thyroiditis

- **Causes**
 - 68% Bacterial (S. aureus, S. pyogenes)
 - 15% Fungal
 - 9% Mycobacterial

- **May occur secondary to**
 - Pyriform sinus fistulae
 - Pharyngeal space infections
 - Persistent Thyroglossal remnants
 - Thyroid surgery wound infections (rare)

- **More common in HIV**
Acute Thyroiditis

Diagnosis
- Warm, tender, enlarged thyroid
- FNA to drain abscess, obtain culture
- RAIU normal (versus decreased in DeQuervain’s)
- CT or US if infected TGDC suspected

Treatment
- High mortality without prompt treatment
- IV Antibiotics
 - Nafcillin / Gentamycin or Rocephin for empiric therapy
- Search for pyriform fistulae (BA swallow, endoscopy)
- Recovery is usually complete
Riedel’s Thyroiditis

- Rare disease involving fibrosis of the thyroid gland

Diagnosis
- Thyroid antibodies are present in 2/3
- Painless goiter “woody”
- Open biopsy often needed to diagnose
- Associated with focal sclerosis syndromes (retroperitoneal, mediastinal, retroorbital, and sclerosing cholangitis)

Treatment
- Resection for compressive symptoms
- Chemotherapy with Tamoxifen, Methotrexate, or steroids may be effective
- Thyroid hormone only for symptoms of hypothyroidism