THYROID CANCER

Mai H. Nguyen, M.D.
Faculty Advisor: Francis B. Quinn, M.D.
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
Dec. 04, 2002
History

- 1812: Gay-Lussac discovered iodine as a cause of goiter.
- 1833: Boussingault prescribed iodized salt for prevention and treatment of goiter.
- 1836: T.W. King presented anatomical descriptions of thyroid gland.
- 1870: Fagge described sporadic and congenital cretinism.
History

1882 - 1917: Theodor Kocher (Bern) introduced techniques of thyroidectomy (>5000 cases). His mortality rate at the end of 19th century is as low as 1.8%

1880s: Billroth suggested bilateral partial thyroidectomy to prevent hypothyroidism.
History

- 1880: Williams S. Halsted: developed his thyroidectomy techniques in the US.
- Thyroid cancer was first described by Halsted by the terms “sarcomatous degeneration”, “thyroid tumor” or “thyroid cancer cells”
Embryology

- 4th week: thyroid gland appears.
- 5th week: break down of the thyroglossal duct, thyroid gland continue descending
- 7th week: thyroid gland migrates to its position, anterior to the trachea
- 10th week: thyroglossal duct disappears
Anatomy

- Locate deep to the sternohyoid muscle, from level C5 to T1 vertebrae or anterior to the 2nd and 3rd tracheal rings.
- Thyroid gland is attached to the trachea by the lateral suspensory (Berry) ligaments.
Anatomy

- Thyroid gland includes 2 lobes and isthmus.
- Isthmus: conical or pyramidal shape.
Anatomy

- Blood supply: sup. & inf. thyroid arteries
- Anatomy variant: thyroid ima artery, in 1.5% to 12%, in front of the trachea.
- Lymph vessels: drain to prelaryngeal, pretracheal and paratracheal nodes.
- Innervation: superior, middle, and inferior sympathetic ganglia.
Anatomy

- Venous supply
 - Superior and middle thyroid v. drain into the IJ
 - Inferior thyroid v. drains into the brachiocephalic trunk
Anatomy - Recurrent Laryngeal Nerve (RLN)

- Sim’s triangle
 - Carotid artery
 - Trachea
 - Inferior pole of thyroid

- LRLN runs parallel with the TEG

- RRLN runs diagonal with the TEG
Thyroid gland - Histology

- **Follicle:**
 - functional unit
 - Follicular cells
 - Contains colloid

- **Lobule:**
 - 20-30 follicles

- **Parafollicular cell or C-cell**
Euthyroidism control:
1. TRH (thyroid releasing hormone) and TSH (thyroid stimulating hormone)
2. Thyroid gland: synthesis, storage, secretion of thyroxine (T4), triiodothyronine (T3)
3. Peripheral control metabolism of T3, T4
Thyroid Nodule Statistics

- 3%-7% population, female is 6.5%; male is 1.5%
- 4% of these nodules are malignant, 1% of all cancers
- Male have a higher risk of being cancer
- Single nodule is more likely malignant than multiple nodules
- Nodules in children and the elderly have a higher risk of malignancy
History Taking

- Age, gender
- Thyroid mass or nodule (time coarse, growth)
- Associated symptoms
 - Pain, hoarseness, dysphagia, dyspnea, stridor, hemoptysis
- Radiation, goiter, Hashimoto’s, Grave’s, other cancers.
- Family history of thyroid and other endocrine tumors.
Physical exam

- Complete head and neck exam
 - Bimanual palpation of thyroid gland and cervical chain of lymph nodes

- Laryngoscope:
 - Evaluate for vocal cord mobility and symmetry
Diagnosis

Needle biopsy:

- Core needle biopsy:
 - Adequate tissue for diagnosis
 - Disadvantages
 - more difficult
 - more traumatic
 - more complications
Diagnosis

- Fine needle aspiration (FNA):
 - Easy to perform, less morbidity.
 - FN: 0.3-10%; FP: 0-2.5%
 - Disadvantages
 - less tissue for diagnosis
 - limit in differentiation of certain types of thyroid cancers
 - Follicular adenoma vs. carcinoma
 - Hurthle cell adenoma vs. carcinoma
Diagnosis-FNA
Diagnosis

Blood test:

- T4, T3, TSH (thyroid function tests)
- Ca, P (hyperparathyroidism asso. with TC)
- TG (increase in recurrent WDTC)
- Calcitonin (increase in MTC)
Diagnosis – U/S

- Sensitive (80%)
- Detect nodule 2-3 mm
- F/u cystic asp., re-collection of fluid
- FNA guide.
Diagnosis - Imaging

- **CT:**
 - Detect tracheal invasion
 - Evaluate for cervical metastasis

- **MRI**
 - Useful to detect residual, recurrent and metastatic carcinoma.
 - T2 differentiates tumor and fibrosis.

- **CXR:**
 - Tracheal deviation, airway narrowing, lung metastasis.
Diagnosis – thyroid scan

- Radioactive iodine or technetium uptake
- Before FNA – test of choice for initial w/u
- Uses today
 - Indeterminate FNA
 - Large benign nodules (> 4cm)
Thyroid Cancer

Classification:

1. Well-differentiated malignant neoplasms (85% of thyroid cancer)
 * Papillary thyroid carcinoma (PTC)
 * Follicular thyroid carcinoma (FTC)
 * Hurthle cell carcinoma (HCC)
2. Poor differentiated malignant neoplasms
 * Medullary thyroid carcinoma (MTC)
 * Anaplastic thyroid carcinoma (ATC)
 * Insular thyroid carcinoma (ITC)

3. Other malignant tumors:
 * Lymphoma
 * Metastatic tumors
Papillary Thyroid Carcinoma (PTC)

- Most common WDTC - 75%-85%
- 80%-90% of radiation-induced TC
- Peak incidence: 30s-40s
- 10 year-survival: 84%-90%
- Female:male ratio is 3:1
PTC – pathology Variants

- Microcarcinoma
- Macrocarcinoma
- Encapsulated
- Follicular
- Oncocytic
- Solid
- Diffuse Follicular
- Diffuse Sclerosing
- Tall Cell
- Columnar
- Dedifferentiated
PTC - pathology

Gross

- Non-encapsulated
- Central necrosis with fibrosis or hemorrhage
- Cystic degeneration in large tumors
- Multicentricity in 75% of tumors
- High rate of metastasis to regional lymph nodes (50%)
PTC - pathology

- Histology
 - Psammoma bodies
 - Columnar thyroid epithelial
 - Well-formed fibrovascular cores
PTC - pathology

- **Histology**
 - Papillary projections
 - Nuclei
 - Vesicular and ground-glass “Orphan Annie” appearance
 - High N:C ratio
 - Mitotic figures
Follicular Thyroid Carcinoma (FTC)

- 5%-10% of thyroid cancers, 15% of WDTC
- Peak in 50s
- Female:male ratio is 3:1
- 10-year survival rate: 86% in non-invasive tumors, 44% in invasive tumors
FTC - pathology

Gross
- Well-encapsulated
- Cystic degeneration, calcification, hemorrhage
- Tendency invade the thyroid capsule and blood vessels.
FTC - pathology

- Histology
 - Follicular pattern with vesicular nucleolus cells
FTC - pathology

- Histology
 - Capsular and vascular invasion
Hurthle Cell Carcinoma (HCC)

- Most aggressive type of WDTC
- About 5% of WDTC
- High incidence of bilateral thyroid lobe involvement
- High incidence of recurrence and high mortality
Medullary Thyroid Carcinoma (MTC)

- Account for 5% to 10% of all thyroid cancers
- Tumor of the calcitonin-producing parafollicular or C-cells
MTC

- Sporadic
 - 80% of MTC
 - Poorer prognosis
 - Unifocal
 - Not associated with other endocrine tumors
 - Peak in middle age to elderly
MTC

- Familial
 - 20% of MTCs
 - Autosomal dominant inheritance
 - Associated with C-cell hyperplasia
 - Associated other endocrine tumors
 - Peak in 30s.
MTC Family traits

- Sipple’s syndrome (MEN II a)
 - MTC
 - Pheochromocytoma
 - hyperparathyroidism

- 2. Wermer’s syndrome (MEN II b)
 - MTC
 - pheochromocytoma
 - mucosal neuromas
 - marfanoid habitus.
MTC

- 50% have regional metastases to lymph nodes.
- Distant metastasis include: lung, liver, adrenal glands, and bone (osteoblastic)
Medullary carcinoma

- **Gross**
 - gray to yellow, firm, well-circumscribed or invasive with bilateral multicentric involvement.

- **Histology**
 - Hyperplastic C-cells contain immunoreactive calcitonin
Anaplastic Thyroid Carcinoma (ATC)

- Undifferentiated differentiated CA
- 3% of thyroid cancers
- Most aggressive, poorest prognosis
- Uncapsulated, extension outside the gland
- Death in several months due to airway obstruction, vascular invasion, distant metastasis.
- Higher incidence in pre-existing multi-nodular goiter
Anaplastic Carcinoma

- **Gross**
 - fleshy, tan-white appearance, with hemorrhagic and necrotic areas.

- **Histology**
 - spindle or giant-cell
Malignant Lymphoma

- 2%-5% of thyroid cancers
- Increase in Hashimoto’s or endemic goiter areas
- Most common in > 50s
- Prognosis factors: cell types and stages
Malignant Lymphoma

- **Gross**
 - large, yellow-tan, scaly with hemorrhagic and necroptic areas

- **Histology**
 - small cell non-cleaved type (MC) and large cell non-cleaved follicular
Metastatic carcinoma

- Found in 2%-4% of patients who died of cancer
- MC from: malignant melanoma, lung, kidney, breast, colon.
- Mets. by lymphatic or vascular deposits of tumor emboli
THYROID GLAND

TX: Primary tumor cannot be assessed

T0: No evidence of primary tumor

T1: Tumor 1 cm or less in greatest dimension limited to the thyroid

T2: Tumor more than 1 cm but not more than 4 cm in greatest dimension limited to the thyroid

T3: Tumor more than 4 cm in greatest dimension limited to the thyroid

T4: Tumor of any size extending beyond the thyroid capsule

Summary of Stage Groupings

Papillary of Follicular

Under 45 Years

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Any</td>
<td>Any</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>Any</td>
<td>Any</td>
<td>M1</td>
</tr>
</tbody>
</table>

45 Years and Over

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>11</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>13</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>14</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>V</td>
<td>Any</td>
<td>Any</td>
<td>M1</td>
</tr>
</tbody>
</table>

Medullary

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>11</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>13</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>14</td>
<td>N1</td>
<td>M0</td>
</tr>
</tbody>
</table>

Undifferentiated

<table>
<thead>
<tr>
<th>All Cases</th>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
</tr>
</tbody>
</table>
Management of the Thyroid Nodule

Serial exam

- Physical examination
 - Benign
 - Asymptomatic palpable nodule

- U/S
 - F/u a benign, nonpalpable nodule
 - F/u a cystic nodule for reaccumulation
Management of the Thyroid Nodule

- Trial of suppression of TSH
 - Benign or indeterminate FNA (controversial)
 - Maintain TSH level between 0.1 and 0.5 mlU/L per day
 - Decrease tumor volume up to 50% in 40% pts.
 - A shrinking tumor is not likely malignant
Management WDTC

Surgical options

- Total thyroidectomy
- Thyroid lobectomy
 - benign or inconclusive frozen section
- Near total thyroidectomy
 - Preserve minimal thyroid tissue, RLN, parathyroid glands.
- +/- Neck dissection
 - N0 – Elective neck dissection is not indicated for WDTC
 - N+ - Level II-V and VI neck dissection
 Level I if clinically + nodes - rare
Adjuvant therapy:

- **Post-op radioactive iodine**
 - Total body scan to evaluate for residual and mets
 - If positive, I-131 ablation performed
 - Pts should be hypothyroid (TSH > 50 mU/l) prior to scan
 - Patients are followed with yearly scanning X 5 years

- **External beam radiation therapy**
 - Advanced locoregional WDTC with gross residual
 - Tumors that do not pick up I-131
 - Unresectable bone mets
 - More sensitive in follicular & papillary vs. Hurthle cell
Management of HCC

- Tx of choice is thyroidectomy
- Thyroid lobectomy
 - Adequate with benign frozen section
 - Completion thyroidectomy for indeterminate frozen section malignant on final pathology
- Tumors are unresponsive to external beam radiation or I-131
- Post-op thyroid suppression is indicated because tumors have TSH receptors.
Management MTC

- Surgery: Thyroidectomy and SLND (level II, III, IV), anterior compartment ND (include level VI, and/or VII).
- 10-year survival rate is 90%
- Recurrent MTC: resistant to chemo and XRT
Management ATC

- Dx: FNA or open biopsy
- Usually unresectable
- Tracheotomy for airway obstruction
- Tx with the combination:
 * Surgery: thyroidectomy/ND, debulking surgery
 * Chemotherapy: Adriamycin and Cisplatin
 * XRT: only external beam, tumor does not concentrate I-131,
Surgical complications

Non-metabolic complications

- **Nerve injury**
 - SLN (laryngeal sensation) – up to 5% incidence
 - Unstable voice
 - Diff. high pitch,
 - Dysphagia and aspiration
 - Laryngoscopy: bowing of VCs, ipsilateral rotation or displacement of affected VC.
 - RLN up to 1-2% incidence
 - Unilateral – no treatment vs medialization procedure
 - Bilateral: re-intubate, tracheotomy
Surgical complications

Non-metabolic complications:
- Hemorrhage: thru the drains, neck swelling
- Airway obstruction
 - Hematoma
 - Laryngeal edema
 - Bilateral RLN injury
- Chyle leak
- Pneumothorax
Surgical complications

Metabolic complications:

- **Hypocalcemia: 5% of thyroidectomy**
 - Prevention - autotransplantation of parathyroid glands
 - Treatment – IV vs PO calcium replacement and Vit. D

- **Thyroid storm**
 - More common in pts. with hyperthyroidism or chronic systemic diseases
 - Tx. supportive
 - Beta blockers
 - Muscle relaxants
Prognostic factors

- Histology: is an important factor
- Age: is a significant factor, e.g. WDTC
- Sex: female have more risk of thyroid nodule; males have more risk of thyroid cancer
- Size: tumor > 1.5 cm has poorer prognosis
- Extracapsular, vascular invasion or metastases disease are poor prognosis factors
- History of radiation: high risk of papillary CA
Prognostic factors

- Mayo clinic: “AGES” including age, grade, extracapsular tumor, and size.
- Lahey clinic: “AMES” including age, metastasis, extracapsular tumor, and size.
Conclusion

- Thyroid cancer is relatively rare (1% of all cancers), one of the most curable cancer.
- Surgery is the treatment of choice for most of thyroid cancers
- Preservation of the RLN and normocalcemia are the goals for a successful thyroidectomy
- Surgical complications are preventable and treatable