Juvenile Nasopharyngeal Angiofibroma
Evaluation and Treatment

Viet Pham, MD
Shraddha Mukerji, MD
The University of Texas Medical Branch (UTMB Health)
Department of Otolaryngology
Grand Rounds Presentation
December 29, 2012
Outline

- Fundamentals
- Pathophysiology
- Diagnostics
- Treatment
- Conclusions
Juvenile Nasopharyngeal Angiofibroma (JNA)

- Rare vascular neoplasm
 - Benign
 - Well-circumscribed
 - Locally invasive, submucosal spread
- Posterolateral nasopharynx
- Adolescent males
- Severe morbidity but low mortality
 - Hemorrhage
 - Intracranial extension

(Hauptman 2007)
First described by Hippocrates (Babyn 2005)
- In 5th century BC
- Description with nasal polyps

Chelius, 1847
- Fibrous nasal polyp
- Association with puberty

“Angiofibroma” coined in 1940 by Friedberg (Gullane 1992)
Male predilection

Adolescent
- Average age 14-15 years
- Age range between 10-25 years (Ardehali 2010)

Comprises 0.5% of head and neck neoplasms (Herman 1999, Tewfik 1999)

Indolent course (Radkowski 1996)
- Symptoms for 6-12 months before diagnosis
- Stage II or higher in 70% by diagnosis
Arterial supply
- Internal maxillary most common
- Other sources
 - Ascending pharyngeal
 - External carotid
 - Internal carotid
 - Common carotid

Occasional contralateral supply
- Controversial origin
 - Posterolateral nasal wall at sphenopalatine foramen
 - Vidian canal
- Embryologic chondrocartilage of skull bones (Schiff 1959)
 - Superior margin of sphenopalatine foramen
 - Trifurcation (Neel 1973, Bremer 1986)
 - Palatine bone
 - Horizontal ala of vomer
 - Root of pterygoid process

(Operative Techniques in Otolaryngology 1999; 10(2): 101-106.)
Pituitary androgen-estrogen axis
- Pathogenesis hypothesis (Schiff 1959)

Receptors (Montag 2006)
- Androgen
- Estrogen

(Operative Techniques in Otolaryngology 1999; 10(2): 101-106.)
- Vascular hamartoma (Girgis 1973)
- JNA stroma cells (Coutinho-Camillo 2008)
 - Vascular endothelial growth factor receptor-2
 - Transforming growth factor beta 1
 - Insulin-like growth factor 2
- Inflammatory reaction

(Operative Techniques in Otolaryngology 1999; 10(2): 101-106.)
Myofibroblast origin

Fibrous pseudocapsule

Multiple vascular channels
 - Abundant endothelium lining
 - Collagenous tissue network
 - Muscular layer absent (Liu 2002)
 - Precludes vasoconstriction
 - Contributes to hemorrhage

(Hauptman 2007)

(JNA Histology)

(Intl Arch Otorhinolaryngol Sao Paulo 2008; 12(3):442-449.)
JNA Presentation

- Adolescent male
- Unilateral nasal obstruction most common
- Recurrent epistaxis
- Nasal mass
 - Smooth, lobulated
 - Compressible
 - Purplish or reddish hue

(Hauptman 2007)
Uncommon
- Middle ear effusion
- Dacrocystitis
- Rhinolalia
- Palate deformity
- Hyposmia or anosmia
- Bilateral (Rha 2003)

Advanced
- Facial swelling/mass
- Proptosis
- Cranial neuropathy
- Headaches
- Massive hemorrhage

(J Maxillofac Surg 1986; 14(6):329-31.)
JNA

Natural History

- **Extension** (Radkowski 1996, Enepekides 2004)
 - Pterygomaxillary fossa
 - Infratemporal fossa
 - Superior orbital fissure
 - Cavernous sinus
 - Orbit
 - Intracranial, 20-36% (Close 1989, Wiatrak 1993)
 - Anterior cranial fossa
 - Middle cranial fossa
 - Pituitary/parasellar

- Dural penetration rare

(Operative Techniques in Otolaryngology 2011; 22(4):281-284.)
(Operative Techniques in Otolaryngology 1999; 10(2): 101-106.)

(adapted from Clin Oncol (R Coll Radiol) 1998; 10(5):330-333.)
- Recurrence secondary to incomplete resection (Fagan 1997)
 - Up to 46% pending surgical technique
 - Extension
 - Sphenoid sinus
 - Base of pterygoid
 - Clivus

- Spontaneous regression (Tosun 2008)
 - After age 25
 - Presumed related to post-pubertal hormonal changes

(J Craniomaxillofac Surg 2012; 40(2):e54-8.)
JNA
Differential Diagnosis

- Vascular fibrosed nasal polyp
- Pyogenic granuloma
- Hemangiopericytoma
- Antrochoanal polyp

- Skull base tumors
 - Craniopharyngioma
 - Chordoma
 - Olfactory neuroblastoma
 - Nasopharyngeal carcinoma
 - Rhabdomyosarcoma
Previous systems
- 1981 - Sessions
- 1983 - Fisch
- 1984 - Chandler
- 1989 - Andrews

Radkowski most recent, 1996
- Posterior extension to pterygoid plates
- Degree of skull base erosion

None is universally accepted

(World Neurosurg 2010; 74(4-5):497-500.)
<table>
<thead>
<tr>
<th>STAGE</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Limited to nose or nasopharynx</td>
</tr>
<tr>
<td>IB</td>
<td>Extension into at least one paranasal sinus</td>
</tr>
<tr>
<td>IIA</td>
<td>Minimal extension through sphenopalatine foramen, Includes minimal part of medial pterygomaxillary fossa</td>
</tr>
<tr>
<td>IIB</td>
<td>Full occupation of pterygomaxillary fossa with Holman-Miller sign, Lateral or anterior displacement of maxillary artery branches, May have superior extension with orbital bone erosion</td>
</tr>
<tr>
<td>IIC</td>
<td>Extension through pterygomaxillary fossa into cheek, temporal fossa, or posterior to pterygoids</td>
</tr>
<tr>
<td>IIIA</td>
<td>Skull base erosion with minimal intracranial extension</td>
</tr>
<tr>
<td>IIIIB</td>
<td>Skull base erosion with extensive intracranial extension +/- cavernous sinus</td>
</tr>
</tbody>
</table>

(Radkowski 1996)
Staging

Radkowski

<table>
<thead>
<tr>
<th>STAGE</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Limited to nose or nasopharynx</td>
</tr>
<tr>
<td>IB</td>
<td>Extension into at least one paranasal sinus</td>
</tr>
<tr>
<td>IIA</td>
<td>Minimal extension through sphenoplatine foramen, Includes minimal part of medial pterygomaxillary fossa</td>
</tr>
<tr>
<td>IIB</td>
<td>Full occupation of pterygomaxillary fossa with Holman-Miller sign, Lateral or anterior displacement of maxillary artery branches, May have superior extension with orbital bone erosion</td>
</tr>
<tr>
<td>IIC</td>
<td>Extension through pterygomaxillary fossa into cheek, temporal fossa, or posterior to pterygoids</td>
</tr>
<tr>
<td>IIIA</td>
<td>Skull base erosion with minimal intracranial extension</td>
</tr>
<tr>
<td>IIIB</td>
<td>Skull base erosion with extensive intracranial extension +/- cavernous sinus</td>
</tr>
</tbody>
</table>

(Radkowski 1996)
<table>
<thead>
<tr>
<th>STAGE</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIA</td>
<td>Minimal extension through sphenopalatine foramen, includes minimal part of medial pterygomaxillary fossa</td>
</tr>
<tr>
<td>IIB</td>
<td>Full occupation of pterygomaxillary fossa with Holman-Miller sign, lateral or anterior displacement of maxillary artery branches, may have superior extension with orbital bone erosion</td>
</tr>
<tr>
<td>IIC</td>
<td>Extension through pterygomaxillary fossa into cheek, temporal fossa, or posterior to pterygoids</td>
</tr>
<tr>
<td>IIIA</td>
<td>Skull base erosion with minimal intracranial extension</td>
</tr>
<tr>
<td>IIIB</td>
<td>Skull base erosion with extensive intracranial extension +/- cavernous sinus</td>
</tr>
<tr>
<td>STAGE</td>
<td>FEATURES</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>IA</td>
<td>Limited to nose or nasopharynx</td>
</tr>
<tr>
<td>IB</td>
<td>Extension into at least one paranasal sinus</td>
</tr>
<tr>
<td>IIA</td>
<td>Minimal extension through sphenopalatine foramen, Includes minimal part of medial pterygomaxillary fossa</td>
</tr>
<tr>
<td>IIB</td>
<td>Full occupation of pterygomaxillary fossa with Holman-Miller sign, Lateral or anterior displacement of maxillary artery branches, May have superior extension with orbital bone erosion</td>
</tr>
<tr>
<td>IIC</td>
<td>Extension through pterygomaxillary fossa into cheek, temporal fossa, or posterior to pterygoids</td>
</tr>
<tr>
<td>IIIA</td>
<td>Skull base erosion with minimal intracranial extension</td>
</tr>
<tr>
<td>IIIB</td>
<td>Skull base erosion with extensive intracranial extension +/- cavernous sinus</td>
</tr>
</tbody>
</table>

(Radkowski 1996)
Characteristic appearance often makes biopsy redundant
- Location at pterygopalatine fossa
- Pattern of growth
- Flow voids

Diagnostic requirements (Amdur 2011)
- Vascular mass with epicenter at posterior nasal cavity near medial pterygopalatine fossa
- Bony remodeling, not destruction
- No regional or distant metastasis

JNA Radiology (Liu 2002)
Radiology

CT

- Intense homogenous contrast enhancement
- Bony detail
 - Holman-Miller sign: anterior bowing of posterior maxillary wall
 - Widening of sphenopalatine foramen
Intense contrast enhancement with rapid decay

Soft-tissue differentiation
- Mucosal inflammation versus sinus fluid
- T1 Signal
 - Heterogeneous intermediate intensity without contrast
 - Diffuse contrast enhancement
- Similar signal intensity on T2

Intracranial extension

Flow voids within numerous tumor vessels (John 2006)
Angiography

- Not a required diagnostic
- Evaluate source vessel
 - Ipsilateral
 - Contralateral
- Preoperative embolization
- Carotid balloon occlusion test (Danesi 2008)
- Can excise without (Ahmad 2008)
Angiography
Preoperative Embolization

- Performed 24-72 hours before resection
 - Gelfoam
 - Polyvinyl alcohol foam
- Decrease intraoperative blood loss
- Shrink larger tumors
- Complications
 - Cerebrovascular accident
 - Blindness
 - Facial paralysis
 - Skin and soft tissue necrosis
Angiography

Preoperative Embolization

- **Moulin, 1995**
 - Embolized 7 of 20 patients
 - Less intraoperative hemorrhage, 1037.5mL vs 5380mL
 - Statistically significant for high-grade tumors only

- **Li, 1998**
 - Embolized 11 of 21 patients
 - Less intraoperative hemorrhage, 677mL vs 1136mL
 - Less transfusion, 400mL vs 836mL
Liu, 2002
- Embolized 13 of 34 patients between 1986-1999
 - External carotid ligation in 9
 - No preoperative treatment in 12
- Less intraoperative hemorrhage with embolization
 - 275mL vs 840mL
 - Tumors limited to nasal cavity or nasopharynx
- No hemorrhage difference
 - Larger tumors
 - No difference compared with carotid ligation

Tumor hypoxia may cause radioresistance
(Amdur 2011)
JNA
Treatment

- Surgery
- Radiation (XRT)
- Chemotherapy
- Hormone therapy
- Other
Primary treatment modality (Marshall 2006)

Still viable for intracranial extension (Bales 2002)

Preoperative embolization
 - Decreased hemorrhage
 - Obscure tumor borders for complete resection (Andrade 2007)

Recurrence
 - Most commonly from incomplete resection
Treatment

Surgical Approaches

- Transpalatal
- Lateral Rhinotomy
- Midfacial degloving
- Infratemporal fossa and craniotomy
- Endoscopic transnasal
Surgery
Transpalatal

- Split and retract soft palate
- Exposure with hard palate resection
- Resect palatine bone and inferior pterygoid plate

Complications
 - Palatal dehiscence
 - Oroantral fistula

(Operative Techniques in Otolaryngology 1999; 10(2):98-100.)
Lateral rhinotomy

Weber-Fergusson incision
 - Lynch extension
 - Lateral subciliary extension
 - Subciliary and supraciliary extension
Surgery
Midfacial Degloving

- Facial translocation
- Intercartilaginous and transfixion nasal incisions
- Gingivobuccal incision
- Le Fort I osteotomies

(Operative Techniques in Otolaryngology 2010; 21(3):171-174.)
Surgery
Midfacial Degloving Complications

- Nasal crusting
- Epistaxis
- Nasolacrimal duct obstruction
- Facial paresthesia
- Facial palsy
- Oroantral fistula
- Vestibular stenosis
- Carotid artery rupture

(Radkowski 1996)
Surgery

Infratemporal Fossa and Craniotomy

- Craniotomy not common
- Anterior access often sufficient for intracranial extent
 - Transfacial, transmaxillary approach (Elsharkawy 2010)
 - Endoscopic feasible in select cases (Danesi 2008)
 - May combine both approaches (Douglas 2006)

(Operative Techniques in Otolaryngology 1999; 10(2): 101-106.)
Surgery
Endoscopic

- Middle turbinectomy as needed for exposure
- Middle meatus antrostomy
- Resect posterior maxillary wall
- Sphenopalatine artery ligation
- Tumor resection from pterygopalatine fossa

(Wormald 2003)
Surgery

Endoscopic Complications

- Nasal synechia
- Cheek paresthesia
- Lacrimal duct stenosis
- Vision changes
 - Diplopia
 - Damage to cranial nerves, III and IV
- Sphenoid mucocele
- Cavernous sinus injury

(Wormald 2003)
Surgery

Endoscopic Complications

- Nasal synechia
- Cheek paresthesia
- Lacrimal duct stenosis
- Vision changes
 - Diplopia
 - Damage to cranial nerves, III and IV
- Sphenoid mucocele
- Cavernous sinus injury

(Surgery Endoscopic Complications)
Higher morbidity with extensive resection

Higher recurrence with limited resection, within 6 months (Tyagi 2006)
- Pterygoid fossa
- Clivus
- Basisphenoid
- Sphenoid diploe
- Cavernous sinus
- Intracranial

Lateral rhinotomy and midfacial degloving
- Wide access
- Cosmetic deformity
Medial maxillectomy (Fagan 1997)
- Extension to medial infratemporal fossa or cavernous sinus
- Accesses sphenoid sinus and anterior skull base

Yiotakis, 2008
- Transpalatal approach
 - Extension to sphenoid sinus
 - Limited lateral exposure
- Le Fort I osteotomy
 - Paranasal sinuses
 - Pterygopalatine fossa
 - Infratemporal fossa
Surgery Planning Approach

- Shift toward endonasal approach (Mann 2004)
- Endoscopic considerations
 - Limited simultaneous instrumentation (Wormald 2003)
 - Limited tumor mobilization (Douglas 2006)
 - Limited view with hemorrhage (Yiotakis 2008)
- No consensus on larger tumors

(Am J Otolaryngol 2003; 24(3):149-154.)
Surgery Planning Approach

- Hosseini, 2005
 - 54 patients, 1991-2002
 - Stage I and II tumors
 - Endoscopic
 - Transpalatal
 - Transantral
 - Stage III tumors
 - Lateral rhinotomy
 - Midfacial degloving
 - Less recurrences
 - Transpalatal if nasopharynx only
 - Le Fort I for skull base extension

- Yiotakis, 2008
 - 20 patients, 1998-2007
 - Transpalatal (stage I-II)
 - Midfacial degloving (stage II)
 - Endoscopic, 2001-2007

<table>
<thead>
<tr>
<th></th>
<th>Transpalatal</th>
<th>Midface</th>
<th>Endoscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBL</td>
<td>925 mL</td>
<td>880 mL</td>
<td>248.8 mL</td>
</tr>
<tr>
<td>Time</td>
<td>260 min</td>
<td>203 min</td>
<td>107.7 min</td>
</tr>
<tr>
<td>Hosp</td>
<td>6.8 days</td>
<td>4.4 days</td>
<td>2 days</td>
</tr>
</tbody>
</table>

EBL: intraoperative hemorrhage
Time: operating time
Hosp: hospitalization duration
Endoscopic appropriate up to stage IIIA tumors (Wormald 2003)

Ardehali, 2010
- 47 patients, 1998-2005
- Endoscopic approach for stage I-IIIA tumors
- Embolization
 - Less intraoperative hemorrhage, 770mL vs 1400mL
 - Less postoperative hemorrhage, 0% vs 11.9%
 - Shorter hospitalization, 1.8 days vs 2.2 days
- Recurrence rate 19.1% within 2.5 years
Treatment

Radiation

- Unresectable or life-threatening tumors
- Dose range: 30-46Gy (McAfee 2006, Chakraborty 2011)
- Reddy, 2001
 - Primary radiotherapy just as effective as surgery
 - Recurrence rate 15%
- Low rate of complications
 - Brain necrosis (Lee 2002)
 - Cataracts (Amdur 2011)
 - Craniofacial growth arrest
 - Induce malignancy (Witt 1983, Makek 1989)
 - Hypopituitarism
 - Osteoradionecrosis (Witt 1983)
Treatment

Radiation

- Control rate 80-85% (Briant 1978, Cummings 1984, Reddy 2001)
- Amdur, 2011
 - 24 patients, 1975-2006
 - Control rate 90% with 36Gy over 20 treatments
 - Adjuvant role
 - No neoadjuvant XRT before subtotal resection
 - No adjuvant XRT if positive microscopic margins
 - Elective nodal irradiation unnecessary
 - Most recurrences by 2 years
 - Tumor decrease less than 50% by 12 months probably not JNA
[Treatment
Chemotherapy

- Recurrent tumors after surgery and radiation
- Side effects
- Rarely used (Lee 2002)
Treatment
Hormone Therapy

- Decrease size and vascularity
 - Estrogens
 - Antiandrogens
- Estrogen therapy
 - Theory
 - Decrease intraoperative blood loss
 - Promote regression
 - Side effects in males (Briant 1978, Chandler 1984)
 - Physical
 - Psychological
- No efficacy with flutamide (Labra 2004)
- Coblation (Ruiz 2012)
- Cryotherapy (Witt 1983, Spector 1988)
- Electrocoagulation (Schiff 1959)
- Gamma knife (Dare 2003, Park 2006)
- Harmonic scalpel (Chen 2006)
- Interstitial brachytherapy (Reddy 2001)
- KTP-laser embolization (Hazarika 2002)
- Sclerotherapy (Schiff 1959)
Conclusion

- Rare vascular neoplasm
 - Adolescent males
 - Posterolateral nasopharynx
 - Nasal obstruction and epistaxis

- Surgery is mainstay of treatment

- Radiation is feasible alternative

References

References

