BRANCHIAL ANOMALIES

David Gleinser, MD
Faculty Advisor: Harold Pine, MD
The University of Texas Medical Branch (UTMB Health)
Department of Otolaryngology
Grand Rounds Presentation
September 30, 2011
Embryology

- Branchial anomalies result from improper development of the branchial apparatus

- Branchial apparatus develops 2nd-6th week
 - Neck is shaped like a hollow tube with circumferential ridges = Arches (mesoderm)

- Ridges between arches = Clefts and Pouches
 - Clefts = outside (ectoderm)
 - Pouches = inside (endoderm)
 - “CAP”
Lateral tongue swellings

Thyroid diverticulum

Mandibular arch

Tub. impar

Second arch

Third Copula arch

Fourth arch

Entrance to larynx
Arches

- Each arch contains
 - Cartilage
 - Cranial nerve
 - Artery
 - Muscle component

- All neural crest origin

- 6 arches, only 5 form structures in humans
 - 1, 2, 3, 4, and 6
 - 5th fails to develop
1st Arch "Mandibular Arch"

- **Skeletal components**
 - Meckel’s cartilage
 - Framework for mandible
 - Malleus head and neck
 - Incus body and short process

- **Muscles**
 - Muscles of mastication
 - Anterior digastric
 - Mylohyoid
 - Tensor tympani
 - Tensor veli palatini

- **Nerve**
 - CN V (Trigeminal)

- **Artery**
 - Maxillary; external carotid
2nd Arch “Hyoid Arch”

- **Skeletal components**
 - Reichert’s cartilage
 - Stapes
 - Malleus manubrium
 - Incus long process
 - Styloid process
 - Hyoid bone (lesser horn and upper body)

- **Muscles**
 - Facial expression, buccinator, platysma, stapedius, stylohyoid, posterior digastric

- **Nerve**
 - CN VII (Facial)

- **Artery**
 - Stapedial
3rd Arch

- **Skeletal components**
 - Hyoid (greater horn and lower body)

- **Muscles**
 - Stylopharyngeus

- **Nerve**
 - CN IX (Glossopharyngeal)

- **Artery**
 - Common/Internal carotid
4th Arch

- **Skeletal components**
 - Thyroid, epiglottic, cuneiform cartilages

- **Muscles**
 - Cricothyroid, inferior constrictors

- **Nerve**
 - Superior laryngeal

- **Artery**
 - Subclavian, aortic arch
6th Arch

- **Skeletal components**
 - Cricoid, arytenoids, corniculate

- **Muscles**
 - All intrinsic muscles of larynx (except cricothyroid)

- **Nerve**
 - Recurrent laryngeal

- **Artery**
 - Pulmonary artery
Branchial Clefts and Pouches

- 4 clefts and 4 pouches
 - 5th and 6th contribute to the 4th

- Clefts provide “covering” to structures of the corresponding arch and pouch
Pouches

- **1st Pouch**
 - Eustachian tube, middle ear, mastoid, inner layer of tympanic membrane

- **2nd Pouch**
 - Tonsils, root of tongue, foramen cecum, pharynx(part)

- **3rd Pouch** – ventral and dorsal wings
 - Ventral wing – Thymus
 - Dorsal wing – inferior parathyroid glands
Pouches

- **4th Pouch**
 - Superior parathyroid glands
 - Parafollicular C-cells of thyroid gland

- **5th Pouch**
 - Contributes to Parafollicular C-cells

- **6th Pouch**
 - Contributes to laryngeal musculature and cartilage
1st Arch Anomalies

- Involves malformations of eyes, ears, palate, and mandible

- 2 main manifestations of “First Arch Syndrome”
 - Treacher Collins Syndrome
 - Pierre Robin Syndrome
Treacher Collins Syndrome

- Mandibulofacial dysostosis
- Inherited AD
- Features
 - Midface and mandibular hypoplasia
 - Ear anomalies: microtia, anotia, stenotic or atresia of EAC, malformation of malleus and incus (CHL)
 - Eye anomalies: coloboma of lower lids, down-sloping palpebral fissures
 - Cleft palate
Treacher Collins Syndrome
Pierre Robin Syndrome

3 Main features

- Micrognathia (small mandible)
- Glossoptosis (posterior displacement/retraction of tongue)
- Cleft palate (U-shaped)
2nd Arch Anomalies

- Malformed auricle
 - Microtia
- Ossicular malformation
 - Stapes, malleus, incus
 - CHL
- Muscular asymmetry of face
- Hyoid malformation
 - lesser horn and upper body
3rd Arch Anomalies

- Hyoid anomalies
 - Lower body
 - Greater horn

- Aneurysm of carotid artery
4th Arch Anomalies

- Laryngeal stenosis
- Laryngoptosis (low position of larynx)
- Chondromalacia
- Double aortic arch
- Pulmonary artery sling
 - Left pulmonary artery originates from right pulmonary artery
 - Slings around right main-stem bronchus
Double Aortic Arch
Pulmonary Artery Sling
1st Pouch Anomalies

- Atretic eustachian tube -> recurrent OM
- ET diverticuli
- Absence
 - Tympanic cavity
 - Mastoid antrum
- Perforated TM
- Bifid tongue
- Branchiogenic nasopharyngeal cysts (very rare)
2nd Pouch Anomalies

- Thyroglossal duct cyst
 - 7% of population
 - Failure of ablation of TGD
 - Anywhere from base of tongue to upper mediastinum

- Typical finding
 - Cystic lesion just below hyoid in midline that moves with deglutination and tongue protrusion
TGD Cyst

- May contain thyroid tissue
 - Potentially the only functioning thyroid
- Perform U/S or CT to look for thyroid and to assess lesion
- Treatment – surgical
- May contain cancer
 - 1%
 - Papillary carcinoma
TGD Cyst
2nd Pouch Anomalies

- Lingual Thyroid
 - Failure of decent of thyroid -> atopic
 - 90% of cases at the base of tongue (lingual thyroid)
 - 4:1 female:male
 - Usually not noted until teenage or young adult
 - Asymptomatic (most cases); dysphagia, airway compromise
 - Reddish mass (well vascularized) at base of tongue
Lingual Thyroid

- Hypothyroidism – 70% of cases
- 2/3 cases – only functioning thyroid tissue
 - Thyroid function study prior to treatment
- Treatment
 - Asymptomatic – Monitor
 - Symptomatic
 - Excise +/- transplant tissue into muscles of neck
 - Radioiodine therapy (destroys all thyroid tissue)
 - Usually require lifelong thyroid replacement
Lingual Thyroid
Lingual Thyroid
Lingual Thyroid
3rd and 4th Pouch Anomalies

- DiGeorge Syndrome
 - Congenital absence of thymus and parathyroids
 - Partial deletion of chromosome 22
 - CATCH-22
 - Cardiac anomalies
 - Abnormal facies
 - Thymic aplasia
 - Cleft palate
 - Hypocalcemia
 - Tetany and impaired cellular immunity (T-cells)
3rd and 4th Pouch Anomalies

- Accessory or undecended parathyroid glands
- Thymic cysts
Branchial Cleft Anomalies

1st Cleft

- Cysts, EAC atresia or stenosis, pits of lower lips, preauricular sinuses or tags
Branchial Cleft Anomalies

- **2nd Cleft**
 - Cysts
 - Cervical sinuses

- **3rd Cleft**
 - Cysts (rare)
 - Thymic cysts

- **4th Cleft**
 - Cysts (extremely rare)
 - Cysts on the Vagus nerve -> cough
Branchial Cleft Cysts

- Results from failed obliteration of branchial clefts
- 2-3% are bilateral
- 2nd cleft cyst is the most common type
 - ~95% of cases
1st Branchial Cleft Cyst

- **Work Classification**
 - **Type I**
 - Preauricular mass or sinus
 - Ectoderm
 - Sinus tract is anterior and medial to the EAC
 - Preauricular region → Lateral to CN VII → Parallels EAC
 → Ends in EAC or middle ear
 - **Type II**
 - More common than Type I
 - Presents at the angle of mandible or submandibular region
 - Angle of mandible -> Lateral or medial to CN VII -> Ends in concha or bony-cartilaginous junction of EAC.
1st Brachial Cleft Cyst Type I
2nd Branchial Cleft Cyst

- Most common branchial cyst
- Presents as a mass just anterior and medial to the SCM in the neck

- Tract
 - Anterior neck -> Along carotid sheath -> Between external and internal carotid arteries -> **superficial** to CN IX and XII -> Opens into tonsillar fossa
2nd Branchial Cleft Cyst
3rd Branchial Cleft Cyst

- Closely associated with the thyroid gland
 - If patient with recurrent thyroid abscesses, consider diagnosis

- Usually on the left

- Tract:
 - Lateral neck (similar or lower location than 2nd) -> Deep to carotids -> Deep CN IX, superficial to CN XII, Superficial to superior laryngeal nerve -> Pierces thyrohyoid membrane -> Opens into apex of pyriform sinus
3rd Branchial Cleft Cyst
4th Branchial Cleft Cyst

- Very rare
 - ~ 200 cases reported in the literature
- Also associated with recurrent thyroid abscesses
- Theoretical path of tract:
 - Low in neck (anterior to SCM) -> Deep to common carotid -> Loops around aortic arch on the left (subclavian on the right) -> Deep to superior laryngeal nerve -> Superficial to recurrent laryngeal nerve -> Opens into pyriform sinus
Work-up

- **Ultrasound**
 - Round mass with uniform low echogenicity and lack of internal septations
 - Advantages: No radiation, no sedation for children, low cost
 - Not typically ordered alone

- **CT**
 - Homogeneous lesion with low attenuation centrally and a smooth enhancing rim
 - Often part of the work-up
 - More radiation, higher cost, may require sedation (children)
Work-up

- **MRI**
 - Hypointense on T1 and hyperintense on T2
 - Advantages: No radiation
 - Disadvantages: Sedation for children, very expensive

- **Fluroscopic fistulography or CT fistulography**
 - Inject radiopaque dye into the fistula or sinus to delineate course

- **Barium swallow esophagography**
 - Help locate fistula tract in type 3 and 4 anomalies

- **FNA**
 - Usually only done if suspect cancer
 - May cause cyst to collapse -> much harder to remove at time of surgery
Treatment – Infected Cyst

- **Antibiotics**
 - Should cover respiratory flora and Staph aureus (broad spectrum)
 - Cover 2-4 weeks

- **Abscess**
 - Consider needle aspiration to drain
 - May work without causing as much scaring as I&D
 - I&D if needle aspiration doesn’t work

- Once infection cleared, operate
Treatment - Surgical

- Complete surgical excision of tract and cyst is treatment of choice in most cases

- 1st cysts
 - Must identify facial nerve as tract is usually associated with it
 - If possible, wait till 2 years of age
 - Mastoid tip defined
 - Facial nerve larger and deeper
 - Controversy: waiting can lead to more infections → more scar → more difficult surgery
 - Lacrimal probes can help locate tract
Treatment - Surgical

- 3rd and 4th cysts
 - Must identify the recurrent laryngeal nerve as closely associated (will be deep to tract)
 - Removal of ipsilateral thyroid lobe is advocated to ensure complete removal of tract
 - Perform DL to examine pyriform sinus
 - Fogarty vascular catheter can be placed through the sinus tract
Endoscopic Cauterization of Pyriform Sinus Opening

- Literature describes this for treatment of 4th sinus tracts, but has been performed with 3rd cleft anomalies

- Recommendation
 - Performed alone
 - Performed with surgical resection of cyst and tract
Endoscopic Cauterization of Pyriform Sinus Opening

- Verret et al
 - Performed endoscopic cauterization of sinus in 10 children with 4th branchial cleft anomalies (no surgical excision!)
 - Dilated sinus opening with balloon catheter → cautery with electrocautery ball coagulator
 - 7 showed no recurrent disease after 3 years
 - 3 lost to F/U
Sources

