Introduction

- Trauma - ½ of all deaths amongst children
 - 15,000 deaths/year
- Pediatric facial fractures
 - Rare
Epidemiology

- 5% of all facial fractures (pediatric and adult)
- Rare in children < 5
 - 10% of pediatric facial fractures
- As age increases
 - Increased incidence
 - Increased severity
- Males more common than females
 - 1.5:1 ratio
 - Interpersonal violence and sports injuries - males
Etiology

Varies with Age

< 5 – less causes
- more supervision
- less independence

> 5 – more causes; increase with age
- More independence
- Involved in more activities
- More interpersonal violence
Etiology by Age

- < 3 – falls
- 3-5 – motor vehicle accidents and falls are equal
- > 5 - motor vehicle accidents account for majority
 - Causes that increase significantly with age
 - Interpersonal violence
 - Recreational activities
- Child abuse – any age group
Facial Growth and Development

- Cranium to facial ratio
 - 8:1 at birth
 - 4:1 at 5 years
 - 2:1 by adolescence (13+)
 - adult ratio

- Facial growth
 - Displacement
 - Movement of bone in relation to facial skeleton
 - Remodeling
 - New bone at one end and resorption at the other
Growth By Site

- **Nasomaxillary complex**
 - Septum – coordinates midfacial growth
 - Study of primates
 - Septum removed in infancy -> midface hypoplasia
 - Grows inferior and anterior
 - Nasal cavity
 - Widens
 - Floor descends with permanent tooth eruption

- **Mandible**
 - Condyle growth center = main coordinator
 - Grows anterior and lateral
 - Last bone to complete growth
Sinus Development

- Born with maxillary and ethmoid sinuses - not usually visible

- **Maxillary**
 - Significant growth around 3 years
 - Inferior growth around 7-8 (permanent teeth erupt)
 - Complete growth by 16

- **Ethmoid**
 - Significant growth around 3-7 years
 - Complete growth by 12-14

- **Frontal**
 - Not present at birth
 - Growth occurs around 3 years
 - Not visible until 6 years
 - Complete growth (related to puberty)
 - 12-14 in females
 - 16-18 in males
Tooth Development

- **Deciduous teeth**
 - Begin to erupt - 6 months
 - Fully erupted - 2 years
 - Remain stable until 6 years

- **Permanent teeth**
 - Begin to erupt - 6-7 years
 - 1st molars and central incisors first
 - 2nd molars erupt – 12 years
Pediatric Bony Skeleton

- More cartilage
- Less mineralized bone -> more elastic
- Increased cancellous:cortical bone
- Medullocortical junction indistinct

Results in:
 - More greenstick fractures
 - More irregular fractures
Initial Management

- ABCs - Focus on Airway
 - Airway
 - Always assume c-spine injury
 - Anatomy
 - Smaller airway
 - Modest edema -> significant airway compromise
 - Larger tongues
 - Floppy epiglottis
 - Place supine with head in neutral position
 - Jaw thrust -> open airway
 - Suction oral cavity of all blood and debris
Endotracheal Intubation

- Helpful positioning
 - age < 2
 - place small towel under shoulders
 - age > 2
 - place small towel under head

- Endotracheal tube
 - Proper size = \((\text{age} + 16) / 4\)
 - Proper depth = \(3 \times \text{endotracheal tube size}\)
 - Fiberoptic intubation is an option
Surgical Airway

- **Age < 12**
 - Avoid cricothyrotomy
 - Landmarks very difficult in younger children
 - Higher incidence of airway stenosis later
 - Tracheotomy preferred (controlled)
 - Needle cricothyrotomy
 - Buys more time (10-30 minutes)

- **Age > 12** – Similar to adult
Secondary Assessment

- Difficult -> children less cooperative
- Asses entire face and head
 - Visual examine and palpation
 - Test sensation
 - Ophthalmologic examination – very important
 - visual acuity
 - extraocellar muscle function
Secondary Assessment

- **Nasal cavity**
 - High risk of septal injuries (hematomas)
- **Oral exam**
 - Missing teeth, lacerations/open fractures
 - Occlusion
 - Difficult to assess in children
 - Teeth are variable
 - Wear facets less apparent
- **Midface stability**
- **Orbital Injury = Formal ophthalmologic evaluation**
Imaging

- **Computed Tomography (CT) scans**
 - Largely replaced plain films in evaluation of facial fractures
 - Readably available
 - Better visualization
 - Axial and coronal scans

- **Panorex**
 - Mandible fractures
 - Second view helps visualization (condyles)
 - Towne’s view (occipitofrontal view)
Fracture Types - Overview

- Nasal fractures
 - Most common
 - 45% of cases

- Mandible fractures
 - 2nd most common
 - 32% of cases

- Orbital fractures
 - 3rd most common
 - ~15% of cases
Treatment Considerations

- Bones heal faster than adults

- Observation and closed techniques
 - Usually all that is required
 - Good results

- If ORIF required
 - Properly align suture lines
 - Avoid extensive periosteal elevation
Maxillomandibular Fixation

- < 2 years
 - Treat as edentulous patient
 - Method
 - Dentist -> acrylic splint
 - Thin posterior edge of splint
 - Prevents premature posterior closure
 - Secure splint in place (circummandibular wires)
 - Immobilize jaw
 - Circummandibular wires
 - Wires through pyriform aperture
Maxillomandibular Fixation

- 2-5 years
 - Deciduous teeth are present, and stable
 - Options
 - Arch bars
 - Cap splints
 - Further support if needed
 - circummandibular wires and wires through the pyriform aperture
Maxillomandibular Fixation

- **6-12 year Consideration**
 - Deciduous tooth roots resorb
 - Permanent teeth are erupting

- **6-7 years**
 - Deciduous molars for fixation

- **8-10 years**
 - Permanent first molars and central incisors

- **10+ years**
 - Multiple permanent teeth available for standard arch bar placement

- May also use orthodontic devices for fixation as well
Plating Pediatric Fractures

Metallic plates

- Possible complications
 - Metal hypersensitivity
 - Bone atrophy
 - Allergy to specific metal
 - Growth restriction
 - Migration of plate into cranium
- One study -> 8% complication rate with metal plates
Plating Pediatric Fractures

Metallic plates

- **Recommendations**
 - Consider other options 1st
 - May be only option
 - Use smallest possible plate
 - Do not cross more than one suture line
 - Later removal - controversial
 - 4-6 weeks later
 - May cause more growth abnormalities
Plating Pediatric Fractures

Resorbable Plates

- High molecular weight poly-alpha-hydroxy acids
 - Broken down by hydrolysis and phagocytosis
 - Degradation products excreted by respiration and/or urine

- Multiple studies: resorbable vs. metallic
 - Similar:
 - Functional outcomes
 - Fixation stability
 - Fixation strength
Plating Pediatric Fractures

Resorbable Plates

- Retains full strength for 4-6 weeks
- Completely resorbed by 12-36 months
- Do not interfere with radiographic studies

Most common complications
- Edema
- Bulkier -> more visible
 - Both of these resolve with time
Nasal Fractures

- **Pediatric nasal bone**
 - More compliant
 - Bends readably when force is applied
 - Forces dissipate into surrounding tissues
 - Greater amount of edema

- **Injury: Septum > Nasal Bone**
 - Septum is more rigid
 - Held tightly in place by perichondrium and surrounding bone
Septal Injuries

- Perichondrium torn from cartilage
 - potential space -> septal hematoma

- Caudal septum is dislocated
 - Nasal obstruction acutely
 - Chronically - twisting deformity

- Cartilage separated from bony septum
 - Nasal obstruction acutely
 - Must be corrected early -> growth disturbances
Nasal Fracture Management

Septal Hematoma Present

- Appearance
 - Purple, compressible bulge
 - Does not shrink with afrin

- Management
 - General anesthesia for child
 1. Hemitransfixion incision to drain
 2. Quilting stitch to close

- Avoid splints - extremely difficult to remove

- Address other nasal injuries, if possible
5 y.o. who sustained blow to nose
Nasal Fracture Management

Septal Hematoma Absent

- Wait 5 days - swelling improves
- Cosmetic defect or nasal obstruction
 - Closed reduction attempt
 - Septum
 - May reduce with nasal bone manipulation
 - Asch forcep manipulation
 - Excision of deviated segment may be required
Nasal Fracture Management

- Indication for open reduction (rhinoplasty)
 - Fractures 2-3 weeks old
 - Failed closed reduction
 - Greenstick fractures causing morbidity
 - Difficult to address without completion osteotomy
 - Better way to address septum
Mandible Fractures

Fractures by site
- Condyle
 - 55-72% of fractures – most common
 - Subcondyle most common subsite
- Parasympyseal - 27%
- Body – 9%
- Angle – 8%
- Multiple fracture sites
 - 1/3 of cases
 - Increased incidence with increased age
- Age increases – more body and angle fractures
Mandible Fractures

General Treatment Considerations

- Primary goal is to restore:
 - Occlusion
 - Function
 - Facial balance

- Callus formation occurs quickly (5-7 days)
 - Must be removed for proper reduction
Management – Condyle Fractures

“Self Correcting”

- Unilateral condyle; normal occlusion and function
 - Observation
 - Range of motion exercises

- Unilateral condyle; normal occlusion; mild deviation from midline
 - Elastic guiding bands for 6-8 weeks
 - Range of motion exercises

- Bilateral condyle; normal occlusion and function
 - Elastic guiding bands for 6-8 weeks
 - Range of motion exercises
Management – Condlye Fracture

- Any fracture: open bite, severe functional impairment, or severe deviation from midline
 - Immobilize for 2-3 weeks
 - 6-8 weeks of guiding elastic

- Open repair
 - Condyle is displaced into middle cranial fossa
 - Fracture prohibiting mandible movement
 - Controversial when growth center involved
Adolescent following interpersonal violence
- Right Subcondyle
- Left parasymphysis
Right image shows a left condylar head fracture
Management – Arch Fractures

- Non-displaced or greenstick fractures (any location)
 - Observation
 - Must follow closely
 - Any change (pain, functional impairment) -> new films

- Anterior fractures (symphyseal/parasymphyseal)
 - Attempt closed reduction
 - Manipulation under general anesthesia
 - Immobilize for 2-3 weeks followed by elastics for 6-8 weeks
 - Closed reduction unsuccessful
 - MMF followed by ORIF
 - Avoid injury to tooth buds
Severely displaced left parasymphysseal fracture – repaired with resorbable plates
Management – Body and Angle Fractures

- Non-displaced and greenstick fractures
 - Observation – follow closely
 - Most common type

- Displaced fractures
 - Attempt closed reduction
 - MMF for 2-3 weeks followed by 6-8 weeks of elastics
 - Unable to align inferior border of mandible
 - MMF followed by ORIF
A – Resorbable plate on left symphyseal fracture
B – Resorbable plate on right angle fracture
Management – Dentoalveolar Fractures

- **Teeth are primary concern**
 - **Avulsed tooth**
 - Permanent tooth – return within 1 hour
 - Deciduous tooth – may act as spacer
 - **No fractures present**
 - Dentist to secure tooth with flexible splint for 2 weeks
 - **Fractured bone segment present**
 - Reduce with manipulation
 - MMF for 2-3 weeks
 - Plates or wires may be needed
 - Secure reimplanted teeth at this time with wires
 - **Further treatment**
 - F/U with dentist for further procedures (root canal)
Orbital Fractures

- Floor and roof - most common
 - Age
 - < 7 – roof fractures more common
 - > 7 – floor fractures more common
 - Mixed fractures – 35% of cases
 - Medial wall fractures – 5-19%
Orbital Roof Fractures

- Classic history
 - Blow to the head with late developing periorbital hematoma

- Typically associated with neurocranial injuries

- 3 types
 - Type I – comminuted fracture, non-displaced
 - Most common
 - Type II – blow-out fracture, displaced superiorly
 - Type III – blow-in fracture, displaced into orbit
 - Surgical intervention usually required
13 y.o. with right orbital blow-in fracture (Type III)
Orbital Roof Fractures

- **Management**
 - **Type I fracture**
 - Almost never need intervention
 - **Type II and Type III fractures**
 - Observe for 7-10 days initially, unless severe injury

- **Fixation required**
 - Functional disability after 7-10 days
 - Aesthetic deformity
 - Neurocranial injury (encephalocele, non-resolving CSF leak)
 - Approaches vary greatly with extent of injury
 - Use of material controversial
 - alloplastic material, cartilage (costal), or bone
Orbital Floor Fractures

- Incidence increases with maxillary sinus development

- Signs/Symptoms
 - Ecchymosis
 - Edema
 - Entrapment
 - Enophthalmus
 - Diplopia
 - Infraorbital anesthesia

- Management
 - Most fractures
 - Observation for 7-10 days
10 y.o. with left orbital floor frx and entrapped inferior rectus
Lateral and superior gaze restriction
Orbital Floor Fractures

- Surgical intervention required
 - Entrapment
 - Oculocardiac reflex
 - Bradycardia from compression of globe or traction on extraocular muscles
 - Severe nausea and emesis
 - Floor fracture > 50% (high risk of late enophthalmus)
 - Failed observation
Pediatric Trapdoor Fracture

“White-eyed” fracture

Pathophysiology
- Elastic bone of orbital floor bends and breaks along infraorbital canal
 - Bony segment displaced inferiorly
- Orbital soft tissue prolapses inferiorly
- Bony segment snaps back -> soft tissue trapped -> entrapment

Presentation
- Severe nausea, emesis
- Oculocardiac reflex
- Minimal to no edema
- Decreased supraduction
- CT may show subtle floor fracture or nothing at all
Pediatric Trapdoor Fracture

Management

- No entrapment - observe

- Entrapment
 - Operate early
 - Some authors recommend same day surgery
 - Others recommend within 2-5 days
 - Delay -> necrosis and fibrosis -> permanent functional deficit
 - Cover fracture site to prevent recurrence
Orbital Floor Fracture Repair

- Approaches similar to adult
 - Transconjunctival, subciliary, subtarsal
 - Endoscopic approaches
 - Must have adequate maxillary sinus

- Material for repair - controversial
 - Some recommend calvarial bone only
 - Others have used alloplastic materials with minimal complication
Zygomaticomaxillary Complex Fractures (ZMC)

- Rare, especially < 5 years
- Incidence increases with development of maxillary sinus
- Non-displaced, greenstick or incomplete fractures – typical presentation

Signs/Symptoms
- Depression over ZMC, periorbital hematoma, subconjunctival hemorrhage, ecchymosis
ZMC Management

- Greenstick and non-displaced fractures
 - Conservative management

- Repair indicated:
 - Aesthetic deformity
 - Presence of trismus

- Isolated, displaced fracture of zygomatic arch
 - Gillies approach with reduction
Other displaced fractures

- Approaches similar to adults (may require multiple)
- Medial displacement of zygomaticomaxillary buttress + greenstick fractures of the frontozygomatic suture and zygomatic arch
 - Common ZMC fracture pattern in pediatrics
 - 1-point fixation at zygomaticomaxillary suture
- More extensive fractures – 2-3 point fixation
 - Frontozygomatic suture, zygomaticomaxillary suture, infraorbital rim
Midface Fractures

- Rare
 - Lack of sinus development and unerupted maxillary teeth
 - More soft tissue overlying midface
 - Soft, elastic bone

- Result from high velocity impacts
 - Associated injuries
LeFort Fractures

- LeFort I
 - Palate + alveolus separated from maxilla
 - Structures involved
 - Anterolateral and medial maxillary walls
 - Septum at the floor of the nose
 - Floor of nose
 - Pterygoid plate

- LeFort II
 - Pyramidal fracture
 - Structures involved
 - Nasofrontal suture
 - Medial and inferior orbit
 - High septum
 - Frontal process of maxilla
 - Anterior wall of maxillary sinus
 - Pterygoid plate
LeFort Fractures

- **LeFort III**
 - Separates facial skeleton from skull base
 - **Structures involved**
 - Nasofrontal suture
 - Medial and lateral orbital walls
 - Orbital floor
 - Frontozygomatic suture
 - Zygomatic arch
 - Nasal septum
 - Pterygoid plate
LeFort Fracture Management

- Primary goal is to establish:
 - Occlusion
 - Normal facial proportions
 - Normal facial symmetry

- Extreme forces involved in injury -> significant edema
 - Best to wait a few days prior to operation
 - Repair within 1 week
LeFort I Repair

- Gingivobuccal sulcus incision
- Reduce fracture and place in MMF
- 4 plates ideal
 - 1 on each side of pyriform aperture
 - 1 on each zygomaticomaxillary suture
- Release MMF once plated
LeFort II Repair

- Place in MMF (stable base)
- Nasal root reduced if displaced
 - Plates on both sides of root
- Zygomaticomaxillary buttress reduced and plated
- Orbit addressed as previously discussed
- Release MMF once complete
LeFort III Repair

- Much more complex and typically requires multiple approaches
- Place in MMF (stable base)
- Work from lateral (zygoma and zygomaticomaxillary buttress) to medial
Naso-orbito-ethmoid Fractures (NOE)

- Very rare in children
 - Underdevelopment and lack of prominence of facial skeleton

- NOE anatomy
 - Nasal, lacrimal, ethmoid, maxillary (frontal process), and frontal bones
 - Medial canthal tendon (MCT)
 - Arises from lacrimal crest
 - Extension of obicularis muscle
 - Acts as pump for lacrimal sac (surrounds it)
 - Maintains intercanthral distance
Pediatric Intercanthal Distance

- Infants < 22mm
- 4 years – 25mm
- 12 years – 28mm
- > 12 years ~ 30mm (adult distance)

Pathologic
- Variation of 5mm – suspect injury
- Variation of 10mm – diagnostic for injury
Signs of NOE Injury

- Flattened nasal root
- Telecanthus
- Rounding of medial canthus (MCT injury)
- Bowstring sign
 - Grasp medial eyebrow near lash line and pull lateral
 - Let go -> should snap back medially
 - + test if does not snap back -> MCT injury
- Central bony segment mobile
 - Child under general anesthesia
 - Insert hemostat into ipsilateral nasal cavity directed at medial orbital wall
 - Mobility with palpation of medial wall -> central segment likely displaced (repair required)
- CSF leak
Classification of MCT Injury

- **Type I**
 - Single, non-comminuted fracture of central bony segment
 - MCT remains attached
 - May be displaced or non-displaced

- **Type II**
 - Comminuted fracture of central bony segment
 - MCT remains attached
 - Unstable fracture

- **Type III**
 - Comminuted fracture + MCT is detached
NOE Management

- Address other injuries prior to NOE
- Very difficult to manage
 - Multiple injury patterns
 - Multiple approaches usually needed
- MCT repair
 - Priority over other NOE injuries
MCT Repair

- **Type I fractures**
 - Non-displaced - observation
 - Displaced – expose fractured central segment + 2 plates
 - frontal bone to central bony fragment
 - maxilla to central bony fragment

- **Type II fractures**
 - Central fragment wired to opposite medial orbital wall (28 gauge wires)
 - Bilateral – wire central fragments to each other in midline
MCT Repair

- Type III fractures
 - Wire/suture MCT to central fragment
 - No fragment for MCT attachment
 - Reconstruct medial wall with calvarial bone – attach MCT
 - Wire fragment to opposite side
 - Bilateral – wire to each other in midline

- Severe nasal injuries with loss of projection may require a calvarial onlay graft
Conclusion

- Trauma - significant cause of morbidity and mortality
- Pediatric facial fractures are rare
 - Incidence, type, and severity increase with age
- Most fractures can be managed conservatively
- If surgery required, care must be taken to avoid further morbidity
Conclusion

- Use of alloplastic material - controversial
 - Very few long term studies involving their use
 - Fear of complications
 - Some reports have shown good results with minimal complications if properly utilized
 - Metallic materials remain an option for pediatric fracture repair, but other options should be considered