Management of the Stridulos Child

Ryan W. Ridley, MD
Faculty Advisors: Harold Pine, MD & Shraddha Mukerji, MD
The University of Texas Medical Branch,
Department of Otolaryngology
Grand Rounds Presentation
April 30, 2009
Definitions

• **Stridor**
 – Harsh sound produced by turbulent airflow through a partial obstruction
 – May be soft and tuneful/musical quality
 – *Characteristic of certain pathology but never diagnostic*

• **Stertor**
 – Snoring type of noise often made by nasopharyngeal or oropharyngeal obstruction
 – May occasionally be created by supraglottic larynx
Pathophysiology of Stridor

- Based on Venturi principle
 - When a gas passes through a narrowed tube/trachea, the lateral pressure that has held the lumen open can drop very quickly causing the tube/lumen to close.
Venturi Vulnerability (Pathophys cont’d)

- Pediatric airway more flexible
- Forces exerted by Venturi principle cause the narrowed, flexible airway to be momentarily closed during either inspiration or expiration.
 - Pattern of intermittent flow creates pattern of vibrations yielding audible sounds
Anatomy

- Infant larynx situated high in the neck with epiglottis located behind soft palate.
- Pharyngeal structures in closer proximity compared to adult.
- Hyoid bone higher.
Anatomy

• Anatomic differences associated with infant airway create a separation between airway and digestive tract.
• Air movement is predominantly transnasal
• As child grows, larynx descends
 – Larger pharynx to facilitate speech production
 – Common conduit for food and air passage
 • Increases risk for foreign bodies, food, gastric contents to enter airway
Figure 26: Pediatric Airway
Anatomy of pediatric airway

Epiglottis
(floppier, u-shaped)

Airway
(more anterior and higher)

Tongue

Hyoid bone

Vocal cords

Thyroid cartilage

Cricoid ring
(Narrowest)

Trachea
(more flexible)

Funnel

Anterior

Posterior

SUSAN GILBERT
TABLE 78.1 SIGNS AND SYMPTOMS OF AIRWAY OBSTRUCTION BY LOCATION

<table>
<thead>
<tr>
<th>Region</th>
<th>Voice</th>
<th>Stridor</th>
<th>Retractions</th>
<th>Feeding</th>
<th>Mouth</th>
<th>Cough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oropharyngeal</td>
<td>Unaffected but can be throaty or full</td>
<td>Inspiratory and coarse; increases during sleep</td>
<td>Sternal and intercostal, increasing to total chest when severe</td>
<td>Difficult to impossible, with drooling or saliva</td>
<td>Open; jaw held forward</td>
<td>None</td>
</tr>
<tr>
<td>Supraglottic laryngeal</td>
<td>Muffled or throaty</td>
<td>Snoring; inspiratory; fluttering</td>
<td>None, until very late</td>
<td>Difficult to impossible</td>
<td>Open; jaw held forward</td>
<td>None</td>
</tr>
<tr>
<td>Glottic</td>
<td>Hoarse or aphonic</td>
<td>Inspiratory early; expiratory also as obstruction increases</td>
<td>Xiphoid early and intercostal later; suprasternal and supraclavicular</td>
<td>Normal, except with severe obstruction</td>
<td>May be closed; nares flared</td>
<td>None</td>
</tr>
<tr>
<td>Subglottic</td>
<td>Hoarse, but can be husky or normal</td>
<td>Inspiratory early; expiratory also as obstruction increases</td>
<td>Xiphoid early and intercostal later; suprasternal and supraclavicular</td>
<td>Normal, except with severe obstruction</td>
<td>May be closed; nares flared</td>
<td>Barking</td>
</tr>
<tr>
<td>Tracheobronchial</td>
<td>Normal</td>
<td>Expiratory and wheezing; becoming to and fro with increasing obstruction</td>
<td>None, except with severe obstruction; xiphoid and sternal</td>
<td>Normal, except with severe airway obstruction or when extrinsic obstruction involves esophagus</td>
<td>May be closed; nares flared</td>
<td>Brassy</td>
</tr>
</tbody>
</table>

A = 1/2 bh
A = 1/2 x 4 x 7
A = 14 sq mm

A = 1/2 bh
A = 1/2 x 2 x 5
A = 5 sq mm

5 is 35% of 14
Evaluation

• History
 – Helpful pneumonic: *SPECS-R*
 • Severity
 • Progression
 • Eating difficulties
 • Cyanosis
 • Sleep disturbance
 • Radiologic findings

Don’t forget to inquire about birth history, maternal STD, history of intubation
Inspiratory stridor

Biphasic stridor

Expiratory stridor
Physical Assessment
First Things First

• Assess severity/need for emergent airway (ABC’s)
 – Noninvasive inspection
 – Indicators of severity
 • Respiratory rate
 • Level of consciousness/mental status
 • Accessory muscle use
 – Signifies significant obstruction

• Auscultation
 – Lung fields
 – Neck
 – Mouth
 – Nose
Distress

Immediately suction

Place oral airway

Mask ventilate

Obstruction persists

Use Laryngoscope to visualize larynx

Patent Airway?

yes

Small ETT placed

No improvement=cause in lower airway,lung

Further investigation

No

Obstruction relieved

Congratulations!

Pathology readily seen by direct vision
Treat accordingly
The Truth about Cyanosis

• Late & inconsistent clue about respiratory failure in infant with stridor
• If cyanotic *w/o stridor* seek other causes
 – CNS
 – CV
 – GI
 – Pulm
Further Assessment

• If child d/n have impending respiratory failure, a more detailed physical exam should be performed
 – General (weight, growth percentile, development)
 – Nasal cavity, oral cavity and oropharynx more thoroughly examined
 – Flexible fiberoptic laryngoscopy
Endoscopy

- In unusual/difficult cases to determine etiology of stridor.
- Laryngoscope, Hopkins rod-lens telescopes, bronchoscope
 - Verify all equipment/light sources work!
- Trach tray in room just in case.
- Good communication between endoscopist and anesthesiologist is a must.
Outline

I. Nose & Nasopharynx
II. Oropharynx or hypopharynx
III. Supraglottic larynx
IV. Glottic larynx
V. Subglottic larynx
VI. Tracheobronchial

- Congenital
- Infectious
- Traumatic
- Neoplastic
- Vascular
- Iatrogenic
- Toxic/metabolic
Nose & Nasopharynx
Nose and Nasopharynx

Congenital
- Choanal atresia
- Pyriform aperture stenosis
- Craniofacial abnormalities

Infectious/Inflammatory
- Polyps
- Rhinitis
- Retropharyngeal abscess
- Adenoid hypertrophy

Traumatic
- Foreign body

Neoplastic
- Encephalocele
- Dermoid
- Glioma

Vascular

Iatrogenic

Toxic
Choanal Atresia (CA)

- Epidemiology
 - Rare: 1 in 10,000 births
 - Females > males
 - 50% unilateral, 50% bilateral
- 2 types: membranous or bony
 - 29% bony
 - 71% mixed bony-membranous (Brown et al, Laryngoscope 1996)
- Pathogenesis controversial
Choanal Atresia (CA)

- Clinical signs & sx
 - Respiratory distress/paradoxical cyanosis
 - Feeding difficulty
 - Associated abnormalities
 - C- Coloboma
 - H- Heart anomaly
 - A- Atresia of choana
 - R- Retarded growth
 - G- Genital hypoplasia
 - E- Ear anomalies and/or deafness

- Clues to diagnosis
 - Inability to pass 8 Fr catheter beyond 3.5 cm from nasal vestibule
 - Flexible scope hits a “brick wall” during exam
 - Mirror under nares fails to fog on expiration
 - Axial CT confirms diagnosis
Choanal Atresia (CA)

• Management
 – Initial McGovern nipple
 • Oral airway or McGovern nipple
 – Surgical
 • Transpalatal
 – Better visualization, high success rate
 – Can damage palate growth plate = cross bite deformities
 • Transnasal
 – Less blood loss, faster procedure
 – Increased CSF leak and meningitis risk
 • Laser
 – CO$_2$, KTP, Holmium:YAG
 – Good success with KTP + endoscopic techniques
 – Operating microscope with CO$_2$ laser also being employed
Congenital Nasal Pyriform Aperture Stenosis (CNPAS)

- Pathogenesis
 - Premature fusion and overgrowth of medial nasal processes
 - May result in a central megaincisor (60% of cases)
 - Could represent a microform of holoprosencephaly
 - Concomitant malfunction of pituitary/adrenal axis
 - May result in a central megaincisor (60% of cases)
 - Could represent a microform of holoprosencephaly
 - Concomitant malfunction of pituitary/adrenal axis

- Clinical picture
 - Very similar to CA
 - Respiratory distress
 - Feeding difficulty
 - Cyclical cyanosis
 - Exam reveals bony obstruction of vestibule
 - Inability to pass catheter/scope into nose

- Thin cut CT with emphasis on pyriform aperture is image modality of choice
Figure 1. Axial section showing nasal fossa stenosis.
Congenital Nasal Pyriform Aperture Stenosis

• Management
 – Initial approach is conservative
 • McGovern nipple, topical decongestants, corticosteroids
 – Surgical approach
 • Aperture widened via superior gingivolabial incision/premaxillary degloving.
 • Mucosa preserved, stents left in place 1-4 weeks

• Prognosis
 – Mild cases may resolve as the child grows
 – Usually excellent long term results with surgery
Oropharynx & hypopharynx
Oropharynx/hypopharynx

Congenital
- Glossoptosis/Macroglossia
- Lingual thyroid
- Vallecular cyst
- Craniofacial abnormality

Infectious/Inflammatory
- Retropharyngeal abscess
- Tonsil hypertrophy

Traumatic
- Foreign body

Iatrogenic
- Toxic

Neoplastic
- Dermoid
- Hemangioma
- Lymphangioma

Vascular
Retropharyngeal Abscess

- **Retropharyngeal space**
 - **Boundaries**
 - Superior: skull base
 - Inferior: As far as T6
 - Posterior: prevertebral fascia
 - Anterior:
 - Buccopharyngeal fascia
 - Pharyngobasilar fascia
 - Lateral: carotid sheath

 *communicates with parapharyngeal space!"
Retropharyngeal Abscess

- **Epidemiology**
 - Most cases occur in childhood
 - 70% of cases in children < 6 yrs old

- **Pathophysiology**
 - Suppuration of retropharyngeal space lymph nodes

- **Clinical symptoms**
 - Odynophagia
 - Worsening dysphagia

- **Physical exam**
 - Asymmetrical, posteriolateral pharyngeal swelling
 - Torticollis
 - Fever
 - Stridor
 - Drooling

- **Labs/imaging**
 - CBC w/ diff
 - Lateral neck films
 - Retropharyngeal tissue
 - At C2: <7mm
 - At C6: <14mm
 - CT neck w/ contrast
 - Distinguish cellulitis v. phlegmon v. abscess
Retropharyngeal Abscess

• Management
 – Cellulitis
 • Trial of IV antibiotics
 – Clindamycin or ampicillin-sulbactam
 – Repeat scan in 48hrs if no improvement
 – Abscess
 • Incision and drainage in OR
Enlarged prevertebral soft tissue
Supraglottic Larynx

Congenital
- Laryngomalacia
- Laryngocele/saccular cyst

Infectious/Inflammatory
- Epiglottitis
- Angioneurotic edema

Traumatic
- Foreign body

Neoplastic
- Hemangioma
- Lymphangioma
- Papilloma

Iatrogenic

Vascular

Toxic
Laryngomalacia

• General
 – Most common cause of congenital stridor
 – May manifest days/weeks after birth
 – Symptoms usually resolve by 12-18 months

• Pathophysiology
 – Stridor caused by prolapse of supraglottic structures into laryngeal inlet
Laryngomalacia

• Signs/Symptoms
 – low, pitched fluttering inspiratory stridor
 • Peaks at 6-9 months
 • Positional variations
 • Exacerbated by activity (i.e. feeding, exertion)
 – Rarely produces cyanosis
 • Cyanosis should prompt suspicion for other pathology
Laryngomalacia

- Physical exam
 - Fiberoptic laryngoscopy while child is awake
 - Direct laryngoscopy/bronchoscopy sometimes needed to rule out synchronous lesions
Laryngomalacia

• Management
 – Self-limited condition; majority of cases resolve
 – Surgical treatment (~10% of cases)
 • Supraglottoplasty
 – Indicated for cases with severe stridor, failure to thrive, apneas, cor pulmonale, pulmonary HTN
Laryngeal Cysts

- Rare form of stridor in infants
- Typical symptoms
 - Stridor
 - Feeding difficulty
 - Cyanosis
- Management
 - Endoscopic excision or unroofing
Laryngeal Cysts

- **Ductal Cysts**
 - Most common type
 - Etiology
 - Obstruction of mucous glands
 - Location
 - Anywhere in larynx but most commonly in supraglottis

- **Saccular Cysts**
 - Least common
 - Location
 - Laryngeal ventricle
 - Usually congenital in infants
 - No communication with laryngeal lumen
A large cyst in the vestibule of the larynx outgrowing the left glossoepiglottic fold
Glottic Larynx

Congenital
- Web/atresia
- Laryngeal cleft
- Stenosis
- Vocal cord paralysis

Infectious/Inflammatory
- Laryngitis

Traumatic
- Hematoma
- Fracture
- Foreign body
- Stenosis
- Vocal cord paralysis

Neoplastic
- Hemangioma
- Lymphangioma
- Papilloma
- Granuloma

Vascular

Iatrogenic
- Vocal cord paralysis

Toxic
Congenital Laryngeal Web

• **Pathogenesis**
 – Arise from failure of recanalization of larynx in embryo

• **Location**
 – Predominantly in the anterior glottis

• **Associated findings**
 – Severe webbing assoc. with subglottic stenosis.
 – Laryngeal atresia requires trach at birth
 – Anterior glottic webs assoc. w/ velocardiofacial syndrome (22q11 deletion) *(Oto Head & Neck 2004 130: 415-17)*

• **Symptoms**
 – Present with abnormal cry, stridor
Congenital Laryngeal Web

• Diagnostic endoscopy
 – Required for diagnosis
 – Other abnormalities must be ruled out as well

• Treatment
 – Simple incision for small webs
 – Laryngofissure with stenting for severe webbing.
 – Endoscopic laser treatment also an option
Posterior Laryngeal Cleft

• Pathogenesis
 – Failure of posterior larynx to fuse (may involve trachea)

• Symptoms
 – Aspiration and hoarseness
 – Usually no stridor

• Classification
 – Correlates with severity
 • Type I-IV
Posterior Laryngeal Cleft

- **Type I**
 - Interarytenoid cleft; superior to the glottis

- **Type II**
 - Partial cricoid cleft; extends inferior to the glottis and partially through the posterior lamina of the cricoid

- **Type III**
 - Total cricoid cleft, with or without extension into the cervical tracheoesophageal wall.

- **Type IV**
 - Laryngotracheoesophageal cleft extending beyond the thoracic inlet.
Type II Cleft
Vocal Cord Paralysis

- **General**
 - 10% of congenital laryngeal lesions
 - May be congenital or acquired
 - Most often cause is idiopathic

- **Etiologies**
 - Traumatic/iatrogenic
 - Obstetric/birth trauma
 - Cardiac surgery
 - Esophageal surgery
 - Other congenital abnormalities
 - Cardiac anomalies
 - CNS origin
 - Chiari malformation

Chiari malformation
Vocal Cord Paralysis

• Unilateral
 – Breathy voice/cry
 – Mild stridor and/or dyspnea
 – Aspiration
 – Treatment
 • Speech therapy
 • If tracheotomy needed, decannulation is usually possible as child/larynx develops

• Bilateral
 – Severe stridor
 – Aspiration
 – Treatment
 • tracheotomy usually required
 • Serial endoscopies
 • Surgery after at least 1 year after trach w/o improvement
Vocal Cord Paralysis

• Evaluation
 – Can be seen with FOL while pt is awake
 – Laryngotracheobronchoscopy must be performed
 • Must palpate arytenoids
 • Exclude synchronous lesions
 – MRI brain, brain stem, neck and chest reasonable if cause not obvious (course of vagus)
 – FEES/MBS may be utilized in cases of aspiration

• Management
 – VFP in infants usually resolves in 6-18mos
 – Scheduled monitoring is reasonable for first 2 yrs
 – Temporary tracheotomy may be necessary
Vocal Cord Paralysis

- Surgical methods
 - CO\textsubscript{2} transverse partial cordotomy
 - Costal cartilage grafting
 - Arytenoidopexy w/wo arytenoidectomy
 - CO\textsubscript{2} laser
 - External approach
Recurrent Respiratory Papillomatosis

• General
 – Rare, but most common neoplasm of larynx in children
 • 4.3/100,000=incidence of newly diagnosed RRP in children<15yo
 – Childhood and adult onset
 • Childhood onset
 – Often dx 2-4 yrs old
 – boys = girls
 – No gender/ethnic difference regarding surgical frequency
 – More aggressive
 – 19.7 surgeries per child
 » 4.4 per year
Recurrent Respiratory Papillomatosis

- **Etiology**
 - HPV types 6 & 11
 - Maternal-fetal transmission

- **Clinical features**
 - Hallmark triad:
 - Progressive hoarseness
 - Stridor
 - Respiratory distress
 - Most often present with dysphonia
 - Stridor is usually 2nd symptom to manifest
 - Inspiratory biphasic
 - 1 year = duration of sx prior to diagnosis
RRP Locations

<table>
<thead>
<tr>
<th>Site</th>
<th>Single lesion</th>
<th>Multiple lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraglottic</td>
<td>5%</td>
<td>26%</td>
</tr>
<tr>
<td>Glottic</td>
<td>92%</td>
<td>97%</td>
</tr>
<tr>
<td>Subglottic</td>
<td>2%</td>
<td>38%</td>
</tr>
<tr>
<td>Tracheal</td>
<td>0</td>
<td>14%</td>
</tr>
<tr>
<td>Bronchopulmonary</td>
<td>0</td>
<td>4%</td>
</tr>
</tbody>
</table>
Papilloma
Recurrent Respiratory Papillomatosis

Treatment Modalities

- **Surgical**
 - Microlaryngoscopy with cups forceps removal
 - Microdebrider
 - CO₂ laser
 - Phono-Microsurgical
 - KTP/Nd:YAG laser
 - Flash scan lasers

- **Adjuvant**
 - α-Interferon
 - Indole-3-carbinol
 - Photodynamic therapy
 - Cidofovir
 - Acyclovir
 - Ribavirin
 - Retinoic acid
 - Mumps vaccine
 - Methotrexate
 - Hsp E7
Subglottic Larynx
Subglottic Larynx

Congenital
- Stenosis
- Cysts

Infectious/Inflammatory
- Croup
- Stenosis

Toxic

Iatrogenic

Vascular

Neoplastic
- Hemangioma
- Papilloma

Traumatic
- Chondritis
- Stenosis
- Fracture
- Foreign body
Subglottic Stenosis

- **Congenital**
 - Dx made in absence of factors causing acquired stenosis
 - Moderate-severe stenosis = Stridor at birth.
 - Mild stenosis = Intermittent stridor

- **Acquired**
 - More common than congenital
 - Usually more severe and difficult to manage
 - Endotracheal intubation trauma = most common cause
Subglottic Stenosis

• Clinical signs/symptoms
 – Degree of stenosis dictates symptoms
 • Severe stenosis, infant may have stridor at birth
 • Mild stenosis may not manifest until URI takes place.
 – In acquired SGS, a clue in neonates may be failed extubation trial.
 • Older children may successfully extubate but present later with progressive worsening respiratory distress
<table>
<thead>
<tr>
<th>Classification</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>No Obstruction</td>
<td>50% Obstruction</td>
</tr>
<tr>
<td>Grade II</td>
<td>51% Obstruction</td>
<td>70% Obstruction</td>
</tr>
<tr>
<td>Grade III</td>
<td>71% Obstruction</td>
<td>99% Obstruction</td>
</tr>
<tr>
<td>Grade IV</td>
<td>No Detectable Lumen</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Subglottic Stenosis

• Evaluation
 – Stenosis may be visualized on plain films
 – Direct laryngoscopy/tracheoscopy needed for confirmation and airway may be staged at this point.

• Prevention
 – Use of uncuffed, polyvinylchloride ETT
 – Smaller tubes
 – Nasotracheal intubation
Subglottic Stenosis

- Treatment options
 - Primary goal is to achieve decannulation (if tracheostomy present) or prevent tracheostomy
 - Conservative
 - Observation (grades I-II)
 - Temporizing measure
 - Tracheostomy

- Definitive Surgical Options
 - Endoscopic methods
 - Laser
 - Anterior cricoid split
 - Laryngotracheal reconstruction
 - Cricotracheal resection
Subglottic Hemangioma

• General
 – 1.5% of all congenital laryngeal anomalies
 – 2:1 female to male ratio
 – Most common neoplasm of infant airway

• Clinical
 – Usually asymptomatic at birth.
 – Biphasic stridor in first 6 months=presenting symptom
 – Cutaneous hemangiomas in 50% at time of dx
 – Lesion characterized by rapid growth that ceases at 12 months.
 • May resolve by 5 yrs
Subglottic Stenosis

Intubation

Pressure necrosis on subglottic mucosa

Edema & ulceration

Secondary infection & perichondritis

Granulation tissue

Fibrous tissue deposition

Stenosis!
Subglottic Hemangioma

• **Diagnosis**
 – Biopsy unnecessary due to pathognomonic appearance
 • Compressible, submucosal mass
 • Reddish or bluish hue
 • Asymmetric
 • Posterior left subglottis
 – Laryngotracheobronchoscopy is method of choice
Subglottic Hemangioma

• Objectives of treatment
 – Preserve stable airway while mitigating the long term sequelae of the treatment

• Current treatment modalities
 – Tracheotomy
 • Temporary
 – Steroids
 – Laser excision
 – Surgical excision
 – Interferon
Tracheobronchial
Congenital
Stenosis/Web
Vascular ring/sling,
Complete tracheal rings
Foregut cysts
TE fistula

Infectious/Inflammatory
Bacterial tracheitis
Bronchitis
Asthma (RAD)*

Traumatic
Foreign body

Toxic

Iatrogenic

Vascular
Vascular rings

Neoplastic
Mediastinal tumors
Thyroid
Thymus
Papilloma
Vascular Causes

• General
 – Congenital vascular anomalies = 5% of stridor cases
 – Symptoms caused by tracheal/bronchial external compression
 – Main culprits:
 • Innominate artery compression
 • Vascular ring (double aortic arch)
 • Pulmonary artery sling
 • Aberrant right subclavian artery
 – Most common anomaly in mediastinum
Vascular Causes

- **Double aortic arch**
 - Persistence of fourth branchial arch and dorsal aortic root bilaterally
 - Most common symptomatic vascular ring

- **Pulmonary artery sling**
 - Most symptomatic of noncircumferential anomalies
 - Right mainstem bronchus affected in majority of cases
 - Associated with presence of complete tracheal rings
Double Aortic Arch Pulmonary Artery Sling
Vascular Causes

• Presentation
 – May be subtle
 – Can present with biphasic stridor/expiratory grunting
 • Chronic cough
 • Recurrent bronchitis
 • Pneumonia
 • Feeding difficulty
 • Failure to thrive
Vascular Causes

- **Diagnostic imaging**
 - Plain films of limited value
 - Barium esophagram may reveal characteristic filling defects
 - CT w/ contrast or MRI is modality of choice

- **Endoscopy**
 - Allows greater assessment of degree of compression
Contrast CT scan showing vascular ring
Vascular Causes

• Surgery
 – Absolute indications:
 • Reflex apnea
 • 48 hrs of medical mgmt failure
 • Prolonged intubation
 – Relative indications
 • Recurrent infections
 • Exercise intolerance
 • Dysphagia causing failure to thrive
 • Concomitant SGS
 • Asthma
 • CF
Tracheomalacia

- Congenital deformity of tracheal rings
- Expiratory stridor/respiratory distress
 - Depends on extent of lesion
- Diagnosis
 - Flexible bronchoscopy with awake patient
 - Collapse of anterior tracheal wall against membranous posterior portion
- Treatment rarely needed as most cases are self limited
 - Some cases may need temporary tracheotomy
 - In secondary tracheomalacia, treatment directed at underlying cause.
Tracheomalacia
Foreign Body Aspiration

• General
 – Most pts < age 3
 – Approx 150 pediatric deaths/year in US
 – Choking=40% accidental deaths in children <1yo

• Pathogenesis
 – Kids being kids…
Foreign Body Aspiration

- Most common objects
 - Coins most commonly ingested
 - Food most commonly aspirated
 - Nuts
 - Seeds
 - Fish/chicken bones in older children
Foreign Body Aspiration

- Esophageal
 - Drooling
 - Dysphagia
 - Emesis
 - Chest pain

- Airway
 - Cough
 - Stridor
 - Cyanosis
 - Wheezing
 - Asymmetric breath sounds
Foreign Body Aspiration

• Imaging studies
 – PA and lateral CXR good for radio-opaque objects
 • Still useful despite lack of obvious foreign body

• Rigid Endoscopy
 – Warranted when clinical suspicion is high despite “innocent/negative” films
 – Airway FB should be dealt with at time of presentation if pt is unstable
 – It is possible to observe esophageal foreign body in hopes of spontaneous passage (mid/distal esophagus)
 • Disc battery requires OR removal promptly
Foreign Body Aspiration

• Prevention
 – Consumer Products Safety Act 1979
 • Objects must be > 3.17 cm diameter and > 5.71 cm in length
 – Poorly enforced
 – Beware of school supplies
<table>
<thead>
<tr>
<th>Croup</th>
<th>Epiglottis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>2yo</td>
</tr>
<tr>
<td>Etiology</td>
<td>Parainfluenza virus type 1</td>
</tr>
<tr>
<td>Symptoms/Signs</td>
<td>Barking cough, inspiratory stridor</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>AP neck film=“steeple sign”</td>
</tr>
<tr>
<td>Treatment</td>
<td>Racemic epi, corticosteroid, humidified O2</td>
</tr>
</tbody>
</table>
“Steeple Sign”

“Thumb Sign”

Bailey, B. Head and Neck Surgery-Otolaryngology. 4th ed.

Harris J, Robert E, Kallen B. Epidemiology of choanal atresia with specific reference to CHARGE association. Pediatrics 1997; 99:363-367

http://emedicine.medscape.com/article/995267-overview

Kirse D, Roberson D: Surgical management of retropharyngeal space infections in children. Laryngoscope 2001; 111:1413

Yates Philip D, Anari Shahram, "Chapter 32. Stridor in Children" (Chapter). Lalwani AK: CURRENT Diagnosis & Treatment in Otolaryngology—Head & Neck Surgery, 2nd Edition
