Extraesophageal Reflux: When Empiric Therapy Doesn’t Work

Andrew Coughlin, MD
Michael Underbrink, MD, FACS
The University of Texas Medical Branch (UTMB Health)
Department of Otolaryngology
Grand Rounds Presentation
January 29, 2013
Outline

• Scope of Extra-esophageal Reflux
• Relevant Anatomy and Physiology
• Describe Extra-esophageal Reflux Syndromes
• Workup of Empiric Treatment Failures
• Indications for Surgical Therapy
• Results of Surgical Therapy
• Discuss my approach to the PPI resistant patient
Impact of Reflux

• 25% of adults experience reflux monthly

• 5-10% experience reflux daily

• PPI’s 3rd most prescribed medication
 – $13.6 billion annually 2009
GERD defined as:
“a condition that develops when the reflux of the stomach contents causes Troublesome symptoms and/or complications”

Troublesome:
“adversely affects an individuals well being”
Metaplasia

http://sitemaker.umich.edu/betrnet/significance
Montreal Classification

GERD is a condition which develops when the reflux of stomach contents causes troublesome symptoms and/or complications.

- **Esophageal Syndromes**
 - Symptomatic Syndromes
 - Typical reflux syndrome
 - Reflux chest pain syndrome
 - Syndromes with Esophageal Injury
 - Reflux esophagitis
 - Reflux stricture
 - Barrett’s esophagus
 - Adenocarcinoma
 - Established Association
 - Reflux cough
 - Reflux laryngitis
 - Reflux asthma
 - Reflux dental erosions

- **Extra-esophageal Syndromes**
 - Proposed Association
 - Sinusitis
 - Pulmonary fibrosis
 - Pharyngitis
 - Recurrent otitis media

Yuksel et al.
Relevant Anatomy
Esophageal Anatomy

18-22 cm long

- Upper esophageal sphincter
- Striated
- Polymyositis
- Myasthenia gravis

Circular

Longitudinal

Smooth
- Scleroderma
- Achalasia

Lower esophageal sphincter

Nonkeratinizing Stratified Squamous Epithelium
Laryngeal Mucosa

http://www.medicalhistology.us/twiki/bin/view/Main/RespiratorySystemAtlas09
Esophageal Sphincters

• Upper Esophageal Sphincter
 – Inner circular layer associated with cricopharyngeus

• Lower Esophageal Sphincter
 – Opens with peristalsis
 – Resting tone 15-45mm Hg
Physiology of Parietal cell
Empiric Therapy for Patients with Symptoms

• GERD
 – Heartburn
 – Epigastric pain
 – Shortness of Breath
 – Regurgitation
 – Belching
 – Chest Pain

• LPRD
 – Dysphagia
 – Sore Thorat
 – Halitosis
 – Voice Changes
 – Cough
 – Throat Clearing
 – Globus Sensation
Cochran Review on Medical Therapy

• Review of RCT’s (van Pinxteren et al. 2006)
 – PPI’s vs H2-Blockers vs Prokinetic medications

• Studies evaluating empiric therapy (19)
 – PPI significantly better at relieving reflux symptoms \((RR: 0.37) \)

• Studies evaluating ENRD (17)
 – PPI significantly better at relieving reflux symptoms \((RR: 0.73) \)
Scrutiny over reflux symptoms

Acid Overproduction

-or-

LES Dysfunction
Should we be using PPI’s so casually?
Fractures (Yu et al.)

- Meta-analysis 10 studies looking at:
 - PPI or H2 blocker usage versus control
 - In general included postmenopausal and older men
 - No RCT’s mainly case control and prospective observational
 - Modest increase risk of fractures (M=F)
 - Hip RR = 1.3
 - Spine RR = 1.56
 - H2 – Blockers not associated with increased risk
Effects on Plavix (Bhatt)

- DB/PC/RCT of Clopidogrel plus PPI or placebo
- Approximately 3800 patients each arm
- Results
 - GI event (1.1% vs 2.9%)
 - Cardiovascular Events (4.9% vs 5.7%)

***No significant increases in the risk of cardiovascular events even in high-risk subgroups
Dependence Issues

- 2009 Reimer et al. (33)
 - Randomized, Double Blinded, Placebo controlled trial of 120 normal patients
 - 12 weeks of placebo
 - 8 weeks of Nexium 40mg/day then 4 weeks placebo
 - Measured GI symptom rating scores (GSRS) weekly
 - Results
 - Both groups similar at baseline
 - Higher GSRS (worse) score at 10, 11, 12 weeks
 - 44% vs 15% reported >1 acid related symptom week 9-12

If you start a PPI, you may not be able to stop it
Extra-esophageal Syndromes
Montreal Classification

GERD is a condition which develops when the reflux of stomach contents causes troublesome symptoms and/or complications.

- Esophageal Syndromes
 - Symptomatic Syndromes
 - Typical reflux syndrome
 - Reflux chest pain syndrome
 - Syndromes with Esophageal Injury
 - Reflux esophagitis
 - Reflux stricture
 - Barrett's esophagus
 - Adenocarcinoma

- Extra-esophageal Syndromes
 - Established Association
 - Reflux cough
 - Reflux laryngitis
 - Reflux asthma
 - Reflux dental erosions
 - Proposed Association
 - Sinusitis
 - Pulmonary fibrosis
 - Pharyngitis
 - Recurrent otitis media
Asthma
Reflux and Asthma Cycle

- Increased Negative Intrathoracic Pressure
- Direct Injury from Reflux
- Increased Cough
- Asthma Exacerbation
Asthma

- Asthma not only is exacerbated by reflux but can also make it worse
 - Steroids and beta agonists relax the LES
Asthma

- Leggett et al.
 - 52 patients with difficult to control asthma
 - Dual Probe pH monitoring
 - 39 patients (75%) had evidence of reflux
 - 55% at distal probe (5cm above LES)
 - 34.6% at the proximal probe (15cm above distal probe)
 - Only 16% of coughing episodes were associated with reflux
Asthma

- American Lung Association Asthma Clinical Research Centers
 - DB/PC/RCT of 412 patients with uncontrolled asthma and no reflux symptoms
 - Nexium 40mg BID versus Placebo for 24 weeks
 - Ambulatory 24 hour pH monitoring at baseline
- Results
 - 40% of patients had asymptomatic reflux
 - No significant difference in asthma exacerbations or PFT’s with treatment
Asthma

- Kiljander et al.
- DB/PC/RCT 770 subjects with moderate to severe asthma
- Nexium 40mg BID vs. Placebo for 16 weeks
- Results
 - Significant improvement in PFT’s in patients with pretreatment nocturnal symptoms and GERD versus patients without pretreatment GERD or nocturnal symptoms
Asthma Recommendation

- Empiric treatment is not helpful unless patients are symptomatic for GERD
- Especially helpful with nocturnal symptoms
- Shoot for lowest effective dose
- If not responsive perform additional workup
Chronic Cough
Chronic Cough

• Present >8 weeks
• 5 most common causes (90% of cases)
 – Postnasal drip
 – Asthma
 – Gastroesophageal reflux
 – Chronic Bronchitis
 – ACE inhibitor
Chronic Cough (Jacobs)

- Triggered by
 - Irritation of the respiratory tract by aspiration
 - Stimulation of an esophageal-bronchial cough reflex (Vagal mediated)
Chronic Cough

• 75% of patients with GER-related cough do not exhibit typical reflux symptoms

• Low specificity of studies to diagnose chronic cough
 – EGD showed only 15% esophagitis in patients with chronic cough (Baldi et al.)

• Success ill-defined
 – Only 35% of patients with abnormal 24 hour pH measurement showed a response to therapy (Ours et al.)
Treatment Chronic Cough

• Poe et al.
 – 79% of patients with cough secondary to GER responded to daily PPI

• Baldi et al.
 – 60% resolution of symptoms
 – Lansoprazole 30mg BID for 4 weeks then BID or daily therapy for 12 weeks
 – No difference between groups
Chronic Cough Recommendation

- Treat with BID PPI for 12 weeks and if no improvement
 - Reassess for PND/Asthma/Bronchitis/etc.
 - Move forward with additional studies to determine if reflux is present
Laryngitis
Laryngitis

• Symptoms
 – Hoarseness
 – Globus sensation
 – Dysphagia
 – Cough
 – Mucous production
 – Sore throat
 – Halitosis
 – Throat clearing

• Signs
 – Erythema of mucosa
 – Vocal cord edema
 – Interarytenoid pachydermia
 – Laryngeal mucous
 – Subglottic edema
 – Granulomas
Nonspecific Nature of LPR

- 80-90% of normal patients will have “reflux findings” on laryngoscopy (Milstein et al.)
- Hypopharyngeal reflux can be found in 19-43% of normal volunteers on pH monitoring (Joniau et al.)
- pH probe-documented LPR in 50% despite LPR symptoms in 69% (Koufman et al.)
Differences between GERD and LPRD (Koufman et al)

- Esophagitis is rare in LPRD (25%)
- Daytime vs Nighttime reflux
- UES vs LES
- Short vs Prolonged acid exposure
- Laryngeal vs Esophageal irritation
- BID vs Daily PPI therapy

Position statement by the AAO 2002
Laryngitis Recommendations

• BID PPI for 6 months
• Plus or minus H2-blocker
• Additional studies if patients do not respond
Chest Pain

- Recurring chest pain with **negative cardiac workup**
 - Burning
 - Pressure-like
 - Substernal
 - Occurring with exercise
What makes you think reflux?

- Post-prandial pain
- Continues for hours
- Retrosternal without radiation
- Relieved with antacids
- Pain that disturbs sleep (Yuksel et al.)

CARDIAC CAUSES RULED OUT
Therapy for Non-Cardiac Chest Pain

• Achem et al.
 – 36 patients with pH study positive reflux and noncardiac chest pain
 – Omeprazole 20mg vs Placebo
 – Symptoms improvement in 81% vs 6% of patients

• Pandak et al.
 – 37 patients in a crossover study evaluating Omeprazole 40mg BID vs Placebo x 14 days/21 day washout then switch.
 – EGD, Esophageal Manometry, Dual Probe pH evaluation at baseline
 – 71% of patients treated with omeprazole had significant symptoms improvement
 – 95% of patients with proven GER responded
 – Reflux investigations not sensitive and were much more expensive than empiric therapy
Chest Pain
Recommendations

• Empiric treatment with PPI for 2-3 months
• Taper to lowest effective dose for responders
• Additional investigations for non-responders
If patients respond to treatment...Great!!!

If patients fail therapy is it:
Resistant Reflux
or
Something Else
Differential Diagnosis

• Asthma/Cough/Laryngitis
 – Non-acidic reflux
 – Eosinophilic Esophagitis

• Chest Pain
 – Achalasia
 – Strictures
 – Nutcracker esophagus
 – Diffuse esophageal spasm
Workup

- Physiologic Testing
 - EGD
 - 24 hour PH Probe
 - Intraluminal Impedence
 - Esophageal Manometry
 - Upper GI or Barium studies
EGD or TNE

- Direct visualization of the esophagus
- Ability to biopsy for Barrett’s or Strictures
- Does not always show esophagitis in patients with reflux symptoms
Mucosal Breaks

Epithelial slough/erythema adjacent to normal tissue
Eosinophilic Esophagitis

![Concentric Rings](image1)

Linear furrowing occurs in 25-100% of patients

Loss of Vascularity occurs in 93% of patients
EE vs GERD
EE vs GERD
24 hour pH Probe Testing (Dual Probe)

- Reserved for patients who have failed therapy or if diagnosis is unclear
- Ability to
 - Quantify the number and duration of reflux episodes
 - Differentiate between upright and supine reflux
 - Correlate these events with subjective symptoms
- No consensus on what qualifies as LPRD
 - >0 reflux events/hour
 - >4 reflux events/hour
Dual PH Probe Tracing
Intraluminal Impedence (Castell)

- Very helpful in evaluation of non-acidic reflux
- Measures directional electrical resistance changes to gas, liquid or solid bolus in the esophagus
- Measures level of reflux
- Can be used in conjunction with pH monitoring to determine the type of reflux that is occurring
Impedence and pH testing

http://www.nature.com/ajg/journal/v102/n3/fig_tab/ajg2007119f5.html#figure-title
Esophageal Manometry

- Measures
 - Peristalsis
 - Esophageal Sphincter Pressure
- Can reveal motility problems that can cause changes in surgical plan in up to 10% of patients (i.e. subtotal fundoplication)
Manometry Example

Ineffective oesophageal motility

Low amplitude contraction

Non-transmitted contraction
Manometry Diseases

http://www.nature.com/gimo/contents/pt1/fig_tab/gimo20_F2.html
Upper GI Series

- Excellent for anatomic evaluation with regards to the LES and the Hiatus
 - Hiatal Hernias
 - Strictures
 - Shortened esophagus
 - Qualitative Evaluation of esophageal peristalsis
Diffuse Esophageal Spasm
Achalasia

http://www.patient.co.uk/doctor/Achalasia.htm
We have all these tests but what do the surgeons say about offering surgery?
Nissen Fundoplication

• Dr. Rudolf Nissen
• First described in 1950’s
• Laparoscopic Nissen has come into favor (Stefanidis et al)
 – Improved cosmesis
 – Reduced morbidity
 – Decrease hospital stay
 – Decreased respiratory complications
 – Faster recovery
Nissen Procedure

Nissen fundoplication

Normal stomach

After surgery
SAGES Consensus Statement

• GERD diagnosis with one of the following:
 – Mucosal break
 – Barrett’s Esophagus on biopsy
 – Peptic stricture with no malignancy
 – Positive pH-metry

***Grade A recommendation

SAGES: Society of American Gastrointestinal and Endoscopic Surgeons
SAGES Consensus Statement

• pH probe studies (PPI and H2-blocker free interval)
 – Total time with pH<4, 5cm above LES
 – Composite score of:
 • Total esophageal acid exposure (time)
 • Upright acid exposure (time)
 • Supine acid exposure (time)
 • Number of episodes
 • Number of episodes lasting >5min.
 • Duration of longest episode

***Wireless 48 hour monitoring is equivalent
SAGES Consensus Statement

• No recommendation for mandatory preoperative manometry
 – Can identify achalasia or other surgical modifying conditions

• Barium swallow not mandatory but can be helpful to delineate anatomy

• Gastric emptying studies to not help preoperatively, but can identify nerve injuries after the first surgery
SAGES Criteria

• Indications for surgery
 – Failed medical management
 – Opt for surgery instead of medical management despite success
 – Complications of GERD
 • Barrett’s Esophagus
 • Peptic Stricture
 – Have extra-esophagaeal manifestations
Predictors of Success

- Francis et al.
- Retrospective review of 237 patients referred for extraesophageal reflux resistant to therapy
- 27 patients treated with Nissen for objective reflux findings
- EGD, pH monitoring, Impedence, Manometry all performed
- Results
 - 59% at least partial improvement in symptoms
 - Better results in patients with heartburn +/- regurgitation at initial visit, a hiatal hernia, and pH<4 for more than 12% of time on pH monitoring
 - Manometry, Impedence, and EGD did not predict success
Surgery vs PPI Therapy

• Lundell et al.
• Randomized trial of Surgery vs PPI
 – 155 patients in each arm
 – 71 in medical group and 53 in surgical group at 12 yrs
• Reassessed by EGD and symptomatology
• Results
 – 53% of patients treated with surgery in remission
 – 40% of patients treated with medicine in remission
Surgery more effective than medical therapy?

- Primary outcomes:
 - Reflux Specific QOL (GSRS)
 - Heartburn
 - Regurgitation
 - Dysphagia
- 4 RCT studied and over 1200 patients
- Significant improvement in patients treated with Surgery
 - Still true at 3 months and 1 year post-op QOL measures
- Surgery more costly, low complication rate (1.7%), small % patients have persistent dysphagia (4.6%)
- Medical therapy more likely to have persistent heartburn or regurgitation issues
Cost effectiveness study of surgery versus medical therapy

• Thijssen et al.
• Systematic review of cost effectiveness studies
• 4 articles reviewed
 – 2 favored medical management
 • Lower initial costs
 • More symptom free months
 – 2 favored surgical management
 • More expensive
 • More Quality adjusted life years than PPI
• Studies looked specifically at 3rd party
• Ultimately more long term data needed as most is inconclusive
New Therapy on the Horizon

• The real problem is LES dysfunction
• GABA agonists (Baclofen and R-Baclofen)
 – Show excellent response at:
 • Decreasing transient hypotension of the LES
 • Decreasing reflux events
 – Poorly tolerated due to central effects and dosing
• Currently developing peripheral agonists and slow-release drugs
• Good initial results in experimental trials when added to PPI
 • Reduced reflux and heartburn events
Conclusions

• Start with empiric therapy and don’t order expensive tests
 – If patients succeed with PPI therapy → Taper LED
 – If patients fail → Confirm reflux with pH probe or EGD

• Impedence testing/Manometry/Upper GI/Barium Swallow are not predictors of surgical success

• Refer to General Surgeons only if you have documented reflux
References

• Wileman SM, McCann S, Grant AM, Krukowski ZH, Bruce J. Medical versus surgical management for gastro-oesophageal reflux disease (GORD) in adults. Cochrane Database Syst Rev. 2010;17:CD003243