Functional Endoscopic Sinus Surgery

Francisco Pernas, MD – Presenter
Patricia Maeso, MD – Discussant
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
May 29, 2009
Outline

- Definitions
- Background and incidence
- Anatomy and embryology
- Patient evaluation
- FESS Concepts of Surgery
- Controversy in Sinus Surgery
- Conclusion
Background
Functional Endoscopic Sinus Surgery

- Replaced old practice of obliterating sinuses and removing mucosa. Concept of irreversibly diseased mucosa refuted.

- Functional aspect refers to:
 - Preserving normal structures
 - Removing only obstruction
 - Preserving mucosa
 - Attempt to restore function
Incidence

- Estimated at 14% of American population
- $1.77 billion per year spent on rhinosinusitis
- CRS ranks fifth compared to all diseases in frequency of antibiotic use associated with treatment.
- CRS affects 32 million ppl/yr
- Accounts for 11.6 million visits to physicians' offices.
Definitions

- Rhinosinusitis - broadly defined as an inflammation and/or infection involving the nasal mucosa and at least one of the adjacent sinus cavities
- Acute rhinosinusitis (AS) – the persistence and worsening of upper respiratory symptoms for greater than a 7-day course but lasts less than 4 weeks.
- Subacute rhinosinusitis (SAS) - is defined as nasal symptoms lasting 4 weeks to 12 weeks
Definitions

- Chronic Rhinosinusitis (CRS) – persistence mucosal inflammation for > 12 consecutive weeks despite medical therapy or occurrence of more than four episodes of symptoms a year with persistent radiographic changes

- Chronic Recurrent Rhinosinusitis (CRRS) - consists of multiple acute episodes with complete resolution of disease between episodes
Embryology
Embryology

- Two processes:
 - Embryo head develops into a structure with two distinct nasal cavities
 - Lateral nasal walls invaginate to create complex folds known as turbinates
Embryology

- Development of sinuses – 6-8 weeks of gestation

- 6th week – Simple lateral nasal wall

- 7th week – Three axial furrows form, give rise to turbinates

- 10th week - Dev of maxillary sinus (invagination of the middle meatus) and uncinate process & the bulla ethmoidalis form a narrow groove known as the hiatus semilunaris
Embryology

- 14th week - the anterior ethmoidal cells appear as several invaginations from the upper middle meatus and the posterior ethmoidal cells from the floor of the superior meatus.
Embryology

- 56th day
Embryology

- 60th Day
Embryology

- 63 days
Anatomy
Ethmoid anatomy

- Ethmoid anatomy is complex: Labyrinth
- Lamellae
 - 1st - Uncinate
 - 2nd - Ethmoid bulla
 - 3rd - Basal lamella of middle turbinate
 - 4th - Superior turbinate
Drainage

- Frontal, anterior ethmoid & maxillary – OMC
- Posterior Ethmoids – Superior meatus
- Sphenoid sinus – Sphenoid-ethmoidal recess
Middle Turbinate

- Three components
 - First – Anterior, oriented in a sagittal plane and attached to skull base
 - Second – Middle, oriented in a frontal plane and attached to lamina papyracea (AKA basal lamella and separates ant from post ethmoids)
 - Third – Posterior, oriented in a horizontal plane and attaches to perpendicular plate of palate (forms roof of middle meatus, anterior to sphenopalatine foramen)
Middle Turbinate

- Cribiform plate
- Fovea ethmoidali
- Lateral lamella
- Anterior ethmoid artery
- Middle turbinate (1st, anterior par)
- Superior turbinate
- 2nd part of the middle turbinate
- 1st part of the middle turbinate
- Sphenoid sinus
- Posterior ethmoid
- Lamina papyracea
- Bulla ethmoidalis
- Uncinate process
- Lacrimal sac
- Agger nasi cell
- Posterior ethmoid
- Middle turbinate 3rd posterior part
Ostiomeatal Complex (OMC)

- AKA – Anterior Ethmoid Middle Meatus Complex
- Common drainage for frontal, maxillary and anterior ethmoid sinuses.
OMC
OMC

- Infundibulum – funnel shaped area whereby the maxillary, anterior ethmoid and frontal sinuses drains
- Uncinate process – Sickle shaped bony ethmoidal structure
- Hiatus Semilunaris – Half-moon shape opening of infundibulum
Uncinate Process

- Attaches to the following structures:
 1. Inf & far post. – To ethmoid process of inf. Turb
Uncinate Process

2. Ant & far sup. – To lamina papyracea, skull base or mid turb
3. Laterally – Lamina papyracea and fontanelle area
Uncinate Process
Bulla Ethmoidalis

- Anterior ethmoid air cells attached to lamina papyrcea and usually open into lateral sinus
Sinus Lateralis = Suprabullar recess and retrobullar recess
Middle turbinate: Horizontal and vertical basal lamella

Sinus Lateralis

SBR

RBR
SBR and RBR
Sphenoid Ostium

- Medial to posterior sup. turbinate
- Located between nasal septum and inferior aspect of sup. turbinate
- Located at the same level as the roof of the maxillary sinus
- Located 4 microdebrider/suction tip breaths above the choanae
- Located 7cm from nasal crest at 30°
Sphenoid Ostium

- Sphenoid sinus
- Superior turbinate
- Sphenoid ostium
- Nasal septum
- Posterior ethmoid
- Middle turbinate
- Choana
Sphenoid Sinus

- Relationships of important structures:
 - Optic nerve – superior-lateral
 - Carotid artery/cav sinus – mid-lateral
 - Vidian nerve and maxillary nerve – inferior-lateral
Square – ant clinoid process, Circles – optic canals, triangle – vidian nerve
Asterisk – pneumatization of pterygoid process
Sphenoid Classification

Conchal
0%—Lang
5%—Congdon

Presellar
23.8%—Lang
28.0%—Congdon

Sellar (including “postsellar”)
76.2%—Lang
67.0%—Congdon
Onodi Cells or Sphenoid cells
Optic Canal in Onodi Cells
Cribriiform plate
Keros Classification

- Type I
 - 1-3mm
- Type II
 - 3-7mm
- Type III
 - 7-16mm
Frontal Cells

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Single frontal recess cell above agger nasi cell</td>
</tr>
<tr>
<td>II</td>
<td>Tier of cells in frontal recess above agger nasi cell</td>
</tr>
<tr>
<td>III</td>
<td>Single massive cell pneumatizing cephalad into frontal sinus</td>
</tr>
<tr>
<td>IV</td>
<td>Single isolated cell within the frontal sinus</td>
</tr>
</tbody>
</table>
Frontal Recess

- **Anatomic Boundaries:**
 - Ant – unicate process & agger nasi
 - Post – bulla ethmoidalis and suprabullar lamella
 - Lateral – lamina papyracea
 - Medially – hiatus semilunaris or middle turb
 - Inf – Ethmoid infundibulum
 - Sup – Fovea ethmoidalis, supraorbital air cell, anterior ethmoid artery and frontal ostium
Frontal Sinus
Patient evaluation

Have a seat Kermit. What I'm about to tell you might come as big shock...
Patient evaluation

• Include in history:
 • Detailed CC
 • Allergy, asthma, asa sensitivity and polyps
 • For patients with CRS
 • Facial pain, congestion, nasal obstruction, drainage and hyposmia
 • Complete pmhx and pshx to identify co-morbidities

• A review of the medical care a patient has received prior to evaluation is also important.
Patient evaluation

- Complete head and neck exam to include:
 - basic ocular examination
 - Visual fields, extraocular eye movement
 - anterior rhinoscopy
 - Evaluate septal deviations, character of mucosa, presence of polyps
 - nasal endoscopy (typically 30°)
 - Floor, nasopharynx, middle meatus, sphenoid recess,
Pre-op CT Evaluation

- CLOSE Technique
- C – Cribriform
- L – Lamina Papyracea
- O – Orbits, onodi cell, Optic Nerve
- S – Sphenoid, Skull Base
- E – Ethmoid Arteries
C - Cribriform

- Assess the Keros type
- Look for assymetry
L – Lamina Papyracea

- Check for dehiscence or pathologic fractures
O – Orbit, Optic Nerve, Onodi Cells

- Check for dehiscence
- Assess for onodi cells (superior-lateral to sphenoid)
- Orbital slope
S – Sphenoid, Skull base

- Assess for Carotid dehiscence and aeration patterns
- Conchal, Pre-sellar, & Sellar (thickness of clivus)
Skull base

- Assess slope of skull base
- Assess if roof of sphenoid is level with skull base
E – Ethmoid Artery
FESS
Concepts of surgery
Role of surgery

- Should be considered as adjunctive to medical therapy
- CRS is an inflammatory and multifactorial disease
- Underlying causes:
 - environmental, reactive airway disease, result from generalized host factors, or genetic
- Institute medical therapy first prior to surgery unless impending complications
- Continued medical therapy is required following surgery to avoid recurrence
Defined surgical substeps are defined according to specific pathophysiologic obstruction that exist based on microanatomy.
Antrostomy

- Some speculate nitric oxide produced in maxillary sinus has bacteriostatic properties, therefore better to keep antrostomy small.
- Uncinate must be completely removed, source of recurrence.
- Mucociliary clearance remains t/o natural os.
- Antrostomy must include the natural osium and accessory osium if present.
Recirculation
Extended Maxillary Antrostomy

- Advocated by some (R. Casiano) in refractory maxillary disease
- Middle meatal sinusotomy opened widely anteriorly (up to NLD), posteriorly to post wall of max sinus, superiorly to roof of max sinus and inferiorly to inferior turbinate.
- Inferior maxillary antrostomy performed inferiorly into the inferior meatus, post to Hasner’s valve (lacrimal punctum).
Extended Maxillary Antrostomy
Extended Maxillary Antrostomy

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age (y)</th>
<th>Gender</th>
<th>Number of previous Caldwell-Luc procedures</th>
<th>Number of previous endoscopic procedures</th>
<th>Location of extended maxillary antrostomy</th>
<th>Last follow-up (mo)</th>
<th>Symptomatic relief on last visit</th>
<th>Postoperative endoscopic exam findings on last visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73</td>
<td>M</td>
<td>2</td>
<td>3</td>
<td>Right</td>
<td>86</td>
<td>Complete</td>
<td>Minimal crusts, mucous</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>F</td>
<td>0</td>
<td>1</td>
<td>Left</td>
<td>10</td>
<td>Complete</td>
<td>NED</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>F</td>
<td>2</td>
<td>1</td>
<td>Right</td>
<td>5</td>
<td>Partial</td>
<td>Patchy edema</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>M</td>
<td>1</td>
<td>2</td>
<td>Bilateral</td>
<td>22</td>
<td>Complete</td>
<td>Polypoid changes</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>F</td>
<td>0</td>
<td>1</td>
<td>Bilateral</td>
<td>17</td>
<td>Partial</td>
<td>NED</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>M</td>
<td>1</td>
<td>2</td>
<td>Left</td>
<td>41</td>
<td>Partial</td>
<td>Mucous</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>F</td>
<td>0</td>
<td>1</td>
<td>Left</td>
<td>4</td>
<td>Complete</td>
<td>Polyp debrided in clinic</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>F</td>
<td>0</td>
<td>1</td>
<td>Left</td>
<td>25</td>
<td>Complete</td>
<td>NED</td>
</tr>
<tr>
<td>9</td>
<td>36</td>
<td>F</td>
<td>1</td>
<td>2</td>
<td>Bilateral</td>
<td>21</td>
<td>Complete</td>
<td>NED</td>
</tr>
</tbody>
</table>
Frontal Sinusotomy

- Question on to perform or not
- Do as little as possible but as much as necessary
 - Some advocate ethmoid dissection and monitor
- Graduated approach to frontal sinuses

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>No exploration</td>
<td>Recess not manipulated</td>
</tr>
<tr>
<td>Frontal recess dissection</td>
<td>Probe/visualize ostium</td>
</tr>
<tr>
<td>Frontal sinusotomy</td>
<td>Enlarge ostium</td>
</tr>
<tr>
<td>Frontal sinus drillout</td>
<td>Drillout floor</td>
</tr>
<tr>
<td>Frontal sinus obliteration</td>
<td>Obliterate sinus</td>
</tr>
</tbody>
</table>

- Should evaluate need with sagittal recons
- Evaluate A-P and Mediolateral dimensions, assess neo-osteogenesis and pneumatization
Frontal Sinusotony

- Common causes of Frontal sinus disease:
 1. Infundibular disease obstructing frontal recess
 2. Mucosal disease and expansion of the agger nasi air cells
Controversy in Rhinology

Balloon Sinuplasty
Balloon Sinuplasty

- Developed in 2006
- Different from prior French biliary catheter in that new technique can fracture bones
- Kennedy concludes that this technique may lead to bacterial introduction and subsequent osteitis, mucositis, and mucoceles.
Frontal Balloon Sinuplasty

- Bolger et. al. in ‘07 published results
- 24 week f/u
- Exclusion criteria patients with extensive sinonasal polyps, prior surgery, CF
- Enrolled 115 patients
- f/u patency was 80.5%
- Patency could not be assessed in 17.9% secondary to anatomy
- Nonpatent 1.6%
Frontal Balloon Sinuplasty

- Revision was required in three sinuses (1%) and three patients (2.75%)
- SNOT-20 scores improved
- Reported 9 cases of bacterial sinusitis, managed with oral abx
- No other adverse events reported
References

1. Diseases of the Sinuses: Diagnosis and Management. Kennedy. Chapters 1, 2, 3, 15, and 16
5. Endoscopic diagnosis and surgery of the paranasal sinuses and the anterior skull base. Heinz Stammberger
6. Rhinology and Sinus Disease, a problem-oriented approach. Steven D. Schaefer
7. Nasal and Sinus Surgery. Steven Marks. Sections 1, 2, and 3.