Medullary Thyroid Cancer

David M. Gleinser, MD
Faculty Advisor: Susan D. McCammon, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
October 27, 2010
The Basics

- Malignant neoplasm of the parafollicular C-cells of the thyroid

- Neuroendocrine tumor
 - Parafollicular cells are of neural crest origin

- 3rd most common thyroid cancer
 - 4% of all thyroid cancers
 - 1000 new cases each year

- Secretory tumor
 - Calcitonin (most common)
 - Carcinoembryonic antigen (CEA)
 - ACTH, Substance P, Gastrin

- Two types
 - Sporadic
 - Familial
Presentation

- Slow growing neck mass
- 50-60% nodal involvement when detected
- Compressive symptoms (dyspnea, dysphagia)
- Hoarseness (RLN)
- Paraneoplastic syndromes
 - Cushing’s, Carcinoid
- Diarrhea
 - Calcitonin causes increased secretion of electrolytes into the intestine
Sporadic vs. Familial

- **Sporadic**
 - 75% of MTC cases
 - Unifocal and unilateral
 - Age at presentation: 5-6th decade
 - No family history
 - Worse prognosis
Sporadic vs. Familial

- **Familial**
 - 25% of MTC cases
 - Multifocal and bilateral
 - Autosomal dominant association
 - MEN IIA/IIB
 - Familial MTC
 - RET proto-oncogene mutation on chromosome 10
 - Codes for a tyrosine kinase receptor protein
 - Age at presentation: 2nd - 3rd decade
 - Better prognosis (found earlier)
 - Progression
 - Primary C-cell hyperplasia -> microinvasive MTC -> macroinvasive MTC
MEN IIA (Sipple Syndrome)

- Most common syndrome associated with MTC
- 3 distinct features
 - MTC
 - Pheochromocytoma
 - Parathyroid hyperplasia
- Involves multiple mutated codons on the RET proto-oncogene
 - 634 (most common)
 - Cutaneous amyloidosis
 - 609, 611, 618, 620
Familial Medullary Thyroid Carcinoma

- Stand alone or subset of MEN IIA?
- Diagnosis:
 - MTC in 2 or more generations without the presence of parathyroid hyperplasia or pheochromocytoma
 - Codons involved: 609, 618, 620, 804
 - Rarely ever see 634
MEN IIB

• Very rare
• Much more aggressive
• Features
 – MTC
 – Pheochromocytoma
 – Musculoskeletal manifestations
 • Marfanoid habitus
 • Pes cavus
 • Pectus excavatum
 • Proximal muscle weakness
 – Mucosal neuromas
 – Urinary and intestinal malformations
• Codon involved is 918

•
RET Mutations – Who Should Be Screened?

- ATA Recommendations
 - Diagnosed with MTC
 - Features of MEN IIA/IIB or FMTC
 - C-cell hyperplasia
 - Family history of MEN IIA/IIB or FMTC (50% risk)
 - Patient with Lichen amyloidosis
 - Lesion in mid-upper back that is extremely pruritic that improves in sunlight
 - Associated with mutation in codon 634
 - Hirschsprung disease
 - Associated with mutation in exon 10 of RET
Prophylactic Thyroidectomy and RET Mutations

- Patients who are asymptomatic, but with known RET mutations should undergo prophylactic thyroidectomy

- Age at which this should occur depends on the mutation

- Mutations are grouped into 4 categories, A-D
 - D is the worst prognosis
 - A is the least likely to develop MTC
RET Mutation Categories

- **A**
 - Codons: 768, 790, 791, 804, 891
- **B**
 - Codons: 609, 611, 620, 630
- **C**
 - Codon: 634
- **D**
 - Codons: 918, 883
Prophylactic Thyroidectomy Based on Categories

- **D**
 - Thyroidectomy prior to 1 year of age
 - Pre-op U/S should be performed
 - Calcitonin not as reliable in this age group

- **C**
 - Thyroidectomy prior to 5 years of age
 - Pre-op U/S and calcitonin should be obtained at age 3

- **A,B**
 - May wait until after 5 years of age in 2 conditions
 - No aggressive family history of disease
 - Normal U/S and calcitonin levels
 - Pre-op U/S and calcitonin at age 3

- Any patient with a thyroid nodule >5mm or calcitonin >40 pg/mL should undergo total thyroidectomy
 - Higher risk of disease and metastasis
RET Mutation Identified, Any Other Tests?

- **Pheochromocytoma**
 - Screened by serum or 24-hour urine metanephrines/normetanephrines
 - Mutations involving codons 918 or 634
 - Screen for at age 10 and yearly after
 - All other mutations
 - Screen for at age 20 and yearly after

- **Hyperplastic Parathyroid Disease (MEN IIA)**
 - Screened by calcium and PTH
 - Mutations of 630 and 634
 - Screen for at age 8, and yearly after
 - All other mutations
 - Screen for at age 20, and yearly after
Older Patients Who Are Asymptomatic Carriers of RET Mutations

• What does older mean?
 – MEN IIA and FMTC – age > 5
 – MEN IIB – age > 1

• All should undergo U/S and calcitonin testing

• Calcitonin < 40 pg/mL and/or nodules < 5mm
 – Total thyroidectomy as soon as possible

• Calcitonin > 40 pg/mL and/or nodules > 5mm
 – Total thyroidectomy + central neck dissection

• If U/S showed nodes > 1cm in lateral neck
 – Perform neck dissection, levels IIa – V + thyroidectomy + central neck dissection

• Benefit of neck dissection with calcitonin < 40 pg/mL and/or thyroid nodules < 5mm has not proven beneficial
Management of Removed or Devascularized Parathyroid Glands

- RET mutations associated with MEN IIA (634, 620, 618, 609)
 - Place in forearm and mark
 - Reason:
 1. High risk of hyperplasia
 2. High risk of re-operation in the neck that could lead to injury of re-implanted parathyroid gland

- Other RET mutations
 - Recommended in forearm for same reason above, but highly unlikely to develop hyperplasia
Making the Diagnosis

- Two main tests
 - FNA
 - Serum calcitonin
 - Pentagastrin stimulated calcitonin is no longer available in the U.S. and rarely available in other countries

- FNA
 - Good at detecting disease, but disease detected later
 - Chang et al
 - Reviewed slides of 34 patients with known MTC
 - 82% were correctly diagnosed by FNA
 - 3 patients - follicular neoplasm
 - 1 patient – desmoid tumor (benign, but aggressive tumor seen in Gardner syndrome)
 - 2 patients – suspicious for MTC
 - Concluded:
 - All patient would have required surgery, and would have been correctly diagnosed with MTC

- Papaparaskova et al
 - 89% of cases reviewed had correct diagnosis by FNA alone
 - 99% of patients went for surgery where correct diagnosis was obtained
Making the Diagnosis

- **Serum Calcitonin**
 - Better at detecting earlier disease
 - **Controversy comes in cost analysis**
 - MTC represents 0.3-1.4% of all thyroid nodules
 - Should we screen everyone with thyroid nodules?

- **Elisei et al**
 - Examined 10,864 patient with thyroid nodules who were screened with serum calcitonin or FNA
 - 0.40% had MTC
 - Patients who had MTC detected by serum calcitonin prior to FNA
 - 59% remission rate after treatment
 - Patients who had MTC detected by FNA alone
 - 2.7% remission rate after treatment
What Serum Calcitonin Level is Indicative of MTC?

- **Costante et al**
 - Reported the PPV of serum calcitonin in the detection of MTC
 - 20-50 pg/mL – 8.3%
 - 51-100 pg/mL – 25%
 - > 100 pg/mL – 100%
MTC is Suspected, Now What?

- **Labs**
 - Serum calcitonin (if not already obtained)
 - Serum CEA
 - RET proto-oncogene mutation testing
 - If RET is positive
 - Screen for pheochromocytoma
 - Screen family members
 - Serum calcium
MTC is Suspected, Now What?

- **Imaging**
 - **U/S**
 - Assess the thyroid, level VI, lateral necks, superior mediastinum
 - **Nodes (+) and/or calcitonin > 400 pg/mL**
 - CT neck and thorax
 - Triple phase contrast enhanced CT of the liver or MRI of liver

- **Machens et al**
 - **Found:**
 - Distant metastasis present - calcitonin > 400 pg/mL and/or primary tumor > 1.2cm
 - Calcitonin 15,000 or primary tumor 5cm – 50% had metastatic disease
 - Calcitonin > 100,000 or primary tumor > 6cm – 100% had metastatic disease
Staging

- **TNM Staging**
 - T1 – Primary tumor ≤ 2cm
 - T2 - > 2cm – 4cm
 - T3 - > 4cm or minimal extrathyroidal extension (invasion of STRAP muscles)
 - T4a – Invasion of trachea, esophagus, larynx, recurrent laryngeal nerve
 - T4b – Tumor encases carotid or major mediastinal vessels or invading prevertebral fascia

 - N0 – no nodes
 - N1a – Level VI nodes only
 - N1b – Lateral neck nodes

 - M0 – no mets
 - M1 – distant mets

- **Important staging features**
 - N1a = Stage III
 - N1b = Stage IVa
 - T4a = Stage IVa
 - T4b = Stage IVb
 - M1 = Stage IVc
Surgical Treatment

• Pheochromocytoma present
 – Must be treated first

• Limited local disease (≤ T3)
 – No nodes detected
 • Total thyroidectomy + Level VI dissection
 – Level VI nodes detected
 • Total thyroidectomy + Level VI dissection
 – Lateral neck nodes detected
 • Total thyroidectomy + Level VI dissection + Level IIa-V neck dissection of side with nodes
Surgical Treatment

- **Advanced disease (T4a, T4b, M1)**
 - Palliative treatment since will not cure these patients
 - Medullary carcinoma at this stage is multifocal and involves multiple organ systems
 - Goal = preserve speech, swallow, and parathyroid function
 - Panel members of the American Thyroid Association split
 - Some recommended complete resection of disease (including laryngectomy, pharyngectomy, esophagectomy) followed by XRT
 - Others recommended debulking, tracheostomy (if needed), and clinical trials with or without hepatic embolization
 - Multiple studies have shown that when MTC is advanced, extent of surgery has no effect on survival
Recurrent Laryngeal Nerve

- Does the Nerve work?
 - Yes
 - Disease is confined to the neck, and cannot be removed from nerve
 - Take nerve
 - Disease extracervical or very advanced
 - Leave nerve
 - No
 - Take nerve
Post-operative Evaluation and Treatment

- **Post-op Calcitonin**
 - Important for tumor surveillance
 - Takes 1-2 months to normalize following surgery
 - Draw 2-3 months post-op
 - Undetectable
 - Observe these patients
 - 97% survival rate at 10 years
 - 3% risk of recurrence
 - Detectable
 - < 150 pg/mL
 - Less likely to find metastatic disease
 - Neck U/S advised
 - May consider CT scans, but unlikely to detect disease
 - > 150 pg/mL
 - Distant metastasis should be considered
 - Neck U/S, CT neck and thorax, triple phase liver CT, bone scan
Post-operative Evaluation and Treatment

• Calcitonin is detectable and disease is found

 – Calcitonin ≥ 150 pg/mL and nodes < 1cm
 • Observation

 – Calcitonin ≥ 150 pg/mL and nodes > 1cm
 • Surgical resection
 – If compartment has not been dissected previously – formal dissection
 – If dissection has occurred – remove gross disease

 – Distant metastasis (extracervical disease)
 • Palliative measures
Post-operative Evaluation and Treatment

- Calcitonin detectable and disease is NOT found
 - Observation only
 - Surgeons have attempted extensive neck dissections and mediastinal node removal without any improvement in survival
Post-operative Evaluation and Treatment

• Diagnostic Laparoscopy with examination of the liver
 – Used to be performed when calcitonin was detectable post-op and imaging was negative
 – No longer recommended by ATA
 • If this was (-) -> extensive neck dissections were performed
 – Does not improve survival
 – Increases morbidity
 • Imagining studies are much more sensitive than they used to be
Role of Calcitonin Doubling Time in Post-op Period

- Ct-DT – independent predictor of survival
 - < 6 months
 - 5 yr survival = 25%
 - 10 yr survival = 8%
 - 6-24 months
 - 5 yr survival = 92%
 - 10 yr survival = 37%
 - > 24 months
 - All patients were alive past 10 years
Role of External Beam Radiation

- Decreases relapse rate in some cases
- Does not improve survival
- Brierley et al
 - Used EBRT in patients with microscopic residual disease, local soft tissue invasion, and node positive disease
 - Local/regional relapse rate = 86%
 - 52% in those who did not receive EBRT
- Chow et al
 - Used EBRT in patients with nodal positive disease
 - 4/4 patients who received EBRT had locoregional control
 - 1/3 patient who did not receive EBRT had locoregional control
ATA Recommendations for EBRT

- Microscopic disease present (+ margins)
- Node (+) disease with detectable calcitonin

- If there were no nodes, margins (-), and calcitonin is detectable
 - ATA does NOT recommend EBRT
 - Unknown location of disease
Chemotherapy

- MTC does not respond well to chemotherapeutic agents

- Partial, but short-lived remission has been seen in 10-20% of cases
 - Dacarbazine, 5-FU, and doxorubicin

- ATA does not recommend chemotherapy in the treatment of MTC
Future Therapies

- Focusing on radioimmunotherapy and vaccine-based therapies

- Compounds that block kinase function
 - Shown to decrease MTC cell proliferation

- Vascular endothelial growth factor and its receptors are another target
Conclusion

- Rare, but potentially deadly form of thyroid cancer
- Early detection and treatment is paramount in patient survival
- RET mutations must be identified, and family members screened
- Surgery is the primary treatment with the aim of removing all possible disease
- EBRT has shown some improvement in relapse rate, but not survival
 - Cannot be relied upon