Autoimmune Inner Ear Disease (AIED)

Christopher D. Muller, M.D.
Faculty Advisor: Arun Gadre, M.D.
The University of Texas Medical Branch
Department of Otolaryngology-Head and Neck Surgery
Grand Rounds Presentation
December 10, 2003
Definition:

- (RPSNHL) (rapidly progressive SNHL) –
 - 30 dB or greater SNHL over at least three contiguous audiometric frequencies occurring over weeks to months

- SSNHL (Sudden SNHL) –
 - 30 dB or greater SNHL over at least three contiguous audiometric frequencies occurring in ≤3 days
Theories

- Viral
- Autoimmune (autoimmune inner ear disease – AIED)
- Vascular
- Intracochlear membrane breaks
Introduction - AIED

- Relatively new etiologic mechanism for sudden or rapidly progressive hearing loss
- Inner ear proteins recognized as foreign or non-self
 - Primary process
 - Secondary to trauma or inflammation
Introduction - AIED

- Some clinicians doubt the existence of the disease
 - Inner ear antigens not yet known
 - Inability to evaluate histopathology
Introduction - AIED

- Important for physicians to understand the concept of the disease
- Treatable cause of SNHL
- Treatment must be started early in the disease course
Introduction - AIED

- Devastating to patients
- Frustrating for physicians
Take Home Message

- **AIED**
 - Rapidly progressive (weeks to months) bilateral SNHL
 - Responds to immunosuppression
 - Treat with steroids first
 - +/- cytotoxic drugs
Introduction - AIED

● 1979 – McCabe first described AIED
 ● Series of 18 patients
 ● Bilateral, rapidly progressive SNHL
 ● 100% had a + Lymphocyte transformation test (LTT) compared to 0% in controls
 ● Hearing improved with steroids
 ● One temporal bone showed vasculitis
Inner Ear Immunology

- Inner ear is not immune privileged
- Endolymphatic sac contains immunocompetent cells (Takahashi, 1988)
 - Site of antigen processing in the inner ear
 - Protects other inner ear sites from foreign or infectious agents
 - Protects from immunologic damage
Inner Ear Immunology

- Cochlea is devoid of immune cells
- Antigens or protein injected into the scala tympanic will reach the endolymphatic sac (Yeo, 1995)
Inner Ear Immunology

- Evidence of inner ear autoimmunity
- Loss of hearing in animals immunized with inner ear proteins (Orozco et al., 1990)
Evidence lacking to support autoimmunity in the inner ear

- No antigen found as a single target of autoimmunity

- Candidate antigens proposed
 - 68 kDa protein linked to hsp 70
 - Type II collagen
 - Many more
Histopathology
- Postmortem examination has shown osteoneogenesis
- Unable to exam T-bone during disease activity

Response to immunosuppression
- Animals pretreated with cyclophosphamide prior to viral insult have reduced hearing loss (Darmstadt et al.)
- Steroids and cytotoxic agents are not specific to immunity
History

- Time course
- Associated symptoms
 - Vertigo/dizziness
 - Aural fullness
 - Tinnitus
- Ototoxic drug use
- Symptoms of URTIs
- H/O head trauma, straining, sneezing, nose blowing, intense noise exposure
- H/O flying or SCUBA diving
History

- PMH:
 - Autoimmune disorders
 - Vascular disease
 - Malignancies
 - Neurologic conditions
 - Hypercoagulable states
 - Sickle cell disease (African Americans)

- PSH: stapedectomy or other otologic surgeries
Physical Exam

- Complete H&N exam
 - Ears: r/o effusions, cholesteatoma, cerumen impaction
 - Weber/Rinne
 - Neurologic exam – cerebellar findings
 - Tandem gait
 - Romberg
 - Nose to finger, heel to shin
- Vestibular – Dix-Hallpike test
Diagnosis

- AIED – classified as a cause of SSNHL
 - More commonly RPSNHL
 - Bilateral and asymmetric
 - 50% with vestibular symptoms
 - Ataxia or light-headedness
 - Episodes are multiple times daily
 - Vestibular testing reveals bilateral reduced responses
 - Slight predominance in middle-aged females
 - < 30% have systemic autoimmune disease
Diagnostic Testing

- Audiogram – diagnostic and prognostic
 - Pure tone
 - Speech discrimination
 - Tympanometry
 - Stapedial reflex
Diagnostic Testing

- Laboratory testing
 - CBC
 - ESR, CRP
 - Chemistry
 - Cholesterol/triglycerides
 - T3/T4, TSH
 - RPR, VDRL
 - HIV
 - Lyme titer
 - Antigen-specific cellular immune tests
 - Lymphocyte transformation test (LTT)
 - Western blot
Diagnostic Testing

- MRI:
 - Rule out cerebellopontine angle tumors
 - Multiple sclerosis
 - Ischemic changes
- 10%-19% of patients with acoustic tumors present with SHL
- 23% may recover hearing
- 1% of patients with asymmetric SNHL have acoustic tumors
Diagnosis

- No test to definitively diagnose AIED
 - Dx currently based on
 - sudden or RPSNHL,
 - Responsiveness to immunosuppressive therapy,
 - +/- positive LTT or Western blot
Diagnosis

Hughes (1996) –

- Lymphocyte transformation test
 - Sensitivity – 50-80%
 - Specificity – 93%
 - Positive predictive value 56-73%

- Western blot
 - Sensitivity – 88%
 - Specificity – 80%
 - Positive predictive value – 92%
Diagnosis

- Currently antigen-specific cellular immune tests are not used routinely by most clinicians
 - Availability
 - Does not change management
 - Low sensitivity
 - Experimental
AIED

- Ideal test for AIED
 - Marker specific for AIED

- 1990 – Harris and Colleagues
 - Used Western blot to discover anti 68kDa autoantibody in sera of patients with Idiopathic sudden or RPSNHL

- 22%-89% will have +test
Moscicki (1990)

- Run test during disease activity
- 94% specificity
 - Correlating results with responsiveness to therapy and disease activity
Further studies

- Billings and Harris
 - Linkage of 68KD protein to heat shock protein 70 (hsp 70)

Theories

- 1) Cross reactivity
- 2) Over expression leads to autoimmunity
 - Gong and Yan (2002) – increase expression of hsp 70 in guinea pigs immunized with CIEAgs
Trune et al. (1998)
- Could not induce hearing loss with hsp 70 in guinea pigs

Harris
- Could not induce hearing loss in immunized mice with hsp 70
Multiple other candidate antigens have been proposed:
- Type II Collagen (Yoo et al., 1982)
- Beta tubulin (Connolly et al., 1997)
- 30 kDa protein
- c Raf
Autoimmune SNHL

- Cogan’s syndrome
- Wegener’s granulomatosis
- Polyarteritis nodosa
- Temporal arteritis
- Buerger’s disease (Thromboangitis Obliterans)
- Systemic Lupus Erythromatosis
Autoimmune SHL

- **Cogan’s syndrome**
 - First described by Cogan in 1940
 - Autoimmune disease of the cornea and inner ear
 - Age of onset 22-29 years
 - Presentation – interstitial keratitis and Meniere’s like episodes of vertigo with BRPSNHL
 - Associated systemic diseases
 - Takayasu’s like or medium-sized vessel vasculitis
 - Aortitis – 10%
Cogans’s Syndrome
Autoimmune SHL

- **Cogan’s Syndrome**
 - Hearing fluctuates with disease exacerbations and remissions
 - Majority develop bilateral deafness (67%)

- Etiology is unknown
 - ? Microbial etiology
 - *Borrelia burgdorferi*
 - *Chlamydia species*
Autoimmune SHL

♦ Cogan’s Syndrome

♦ Diagnosis –
 ♦ Requires both eye and inner ear manifestations of inflammation
 ♦ CBC, ESR, RPR, FTAbs
 ♦ MRI/CT

♦ Therapy – Same as for AIED
Treatment

- Controversial
- Varied
- Lack of double-blind, prospective clinical trials
- Consensus – steroids are effective and should be used
Treatment

- Prednisone 1mg/Kg/day for 4 weeks
- Slow taper
- Relapse during taper – restart
 - (?higher dose)
- Slow taper
- If relapse during taper – Cytotoxic agent
 - Methotrexate (7.5-15mg weekly + folic acid)
 - Cyclophosphamide (100mg po bid)
- Monitor electrolytes, LFTs, blood counts, U/A
- Rheumatology consultation
Treatment

McCabe favors starting with cyclophosphamide and prednisone from the start
Treatment

1996 - Review by Hughes

- Recommendations for treatment
 - Low salt (2g/day diet) and Maxide once daily
 - Prednisone 1mg/kg/day
 - Acyclovir 1-2 g orally daily in five divided doses for 10 days
Treatment Data

- Sismanis 1997 – MTX
 - 69.6% with hearing improvement
 - 80% with vestibular improvement

- Matteson (2001) – prednisone
 - 72% w/ hearing improvement

- Moscicki (1994) – prednisone
 - 75% w/ hearing improvement w/ + Western blot
 - 18% w/ - Western blot
Treatment Data

- Harris (2003)
 - 57% improved on prednisone
 - Found that MTX did not have any affect on maintenance of hearing improvement compared to placebo

- Lasak (2001)
 - Prednisone had more effect on PTA
 - (14.8 vs. 4.5 dB)
 - Cytotoxic drugs had more effect on speech discrimination
 - (26.2 vs. 6.9%)
Treatment

- Steroids
 - 1980 – Wilson and colleagues
 - Double-blind studies with oral steroids in patients with SSNHL
 - Decadron given over 10-12 days
 - Patients stratified based on audiogram
 - Results: steroids work in patients with hearing loss between 40 and 90 db
 - No effect for patients with >90 db
 - Midfrequency loss – patients excluded from study
 - 1984 - Findings confirmed by Moskowitz
Fig 2.—Categories of sudden hearing loss as determined by spontaneous recovery rate and response to steroid therapy.
Plasmapheresis

- Proposed by Luetje (1989)
- 1997 – Luetje reported on 21 patients
 - Several had remarkable improvements in hearing
- If available, reserved by most for immunosuppressive treatment failures
Some patients will progress to bilateral profound deafness
- Remember cochlear implantation
- Excellent candidates
Prognosis

- Natural course of AIED is not known
- 47%-63% w/ SSNHL spontaneously resolve
 - Combined patients with all audiogram types
- Four prognostic variables
 - Time since onset
 - Audiogram type
 - Vertigo
 - age
Prognosis

1984 – Byl

- 8 year prospective study of 225 patients with RPSNHL or SSNHL
- Looked at factors for prognosis
 - Age
 - Vertigo
 - Tinnitus
 - Audiogram pattern
 - Time elapsed on presentation
 - ESR level
Prognosis

- Age - <15 and >65 years had worse prognosis
Prognosis

- **Vertigo** – 29% recovery if affected
 - 55% if not affected

Fig. 2. Recovery related to erythrocyte sedimentation rate (ESR) and vertigo.
Prognosis

Audiogram type

SRT, 30 dB Discrim 52%
Best

SRT, 85 dB Discrim 24%
Worst
Prognosis

- 56% recovery presenting within 7 days onset
- 27% presenting 30 days or later
Conclusion

- Devastating to patients
- Frustrating for physicians to dx and tx
- Thorough H&P
- Rule out treatable cause
- Directed labs, Audiogram MRI
- Discuss risks, benefits, and alternatives of treatment with the patient
- Treat the disorder aggressively
- Rehabilitate those whose hearing does not improve
- Follow patients for development of associated diseases and for contralateral ear disease
Future

- Improved understanding of immunologic events in the inner ear
- Balance of Th1 and Th2 lymphocytes
 - Th2 – maintenance of “tolerance”
 - Understanding the role of Th2 gene products
- May lead to new immunotherapeutic strategies