Vocal Cord Paralysis
Medialization Laryngoplasty

Shashidhar S. Reddy, MD, MPH
Faculty Sponsor: Anna Pou, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
April 2004
Overview

- Anatomy of the Larynx
- Function of the Larynx
- Causes of Vocal Cord Paralysis
- Evaluation of Vocal Cord Paralysis
- Anterior TVC Medialization
- Posterior TVC Medialization
- Overview of Treatment for Bilateral Vocal Cord Paralysis
- Conclusion (Key Points)
Anatomy of the Larynx - Cartilages
Anatomy of the Larynx - Cartilages
Anatomy of Larynx - Muscles
Anatomy of Larynx - Muscles
Anatomy of Larynx - Nerves
Anatomy of Larynx - Nerves
Anatomy of Larynx - Motion

- Adductors of the Vocal Folds:
Anatomy of the Larynx - Motion

- Adductors of the Vocal Folds:
Anatomy of the Larynx - Motion

- Abductor of Larynx:
Anatomy of Larynx - Histology
Function of Larynx

- Passage for Respiration
- Prevents Aspiration
- Allows Phonation
- Allows Stabilization of Thorax
Respiration
Phonation
Vocal Cord Paralysis

Etiology, Preoperative Evaluation, Treatment
Etiology

- Causes of Vocal Cord Paralysis in Adults:

<table>
<thead>
<tr>
<th>Cause</th>
<th>Unilateral %</th>
<th>Bilateral %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgery</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Idiopathic</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Malignancy</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Trauma</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Neurologic</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Intubation</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Evaluation – Patient History

- Alcohol and Tobacco Usage
- Voice Abuse
- URI and Allergic Rhinitis
- Reflux
- Neurologic Disorders
- History of Trauma or Surgery
- Systemic Illness – Rheumatoid
- Duration – Affects Prognosis
Evaluation – Physical Examination

- Complete Head and Neck Examination
- Flexible Fiberoptic Laryngoscopy
- 90 degree Hopkins Rod-lens Telescope
- Adequacy of Airway, Gross Aspiration
- Assess Position of Cords
 - Median, Paramedian, Lateral
 - Posterior Glottic Gap on Phonation
Evaluation - Videostroboscopy

- Demonstrates subtle mucosal motion abnormalities
- Video documentation (not available online)
Evaluation - Electromyography

- Assesses integrity of laryngeal nerves
- Differentiates denervation from mechanical obstruction of vocal cord movement
- Electrode in Thyroarytenoid and Cricothyroid
Evaluation - Electromyography

- Normal
 - Joint Fixation
 - Post. Scar

- Fibrillation
 - Denervation

- Polyphasic
 - Synkinesis
 - Reinnervation
Evaluation - Imaging

- Chest X-ray
 - Screen for intrathoracic lesions
- MRI of Brain
 - Screen for CNS disorders
- CT Skull Base to Mediastinum
- Direct Laryngoscopy
 - Palpate arytenoids, especially when no L-EMG
Evaluation – Unilateral Paralysis

- Preoperative Evaluation
 - Speech Therapy
 - Assess patient’s vocal requirements
 - Do not perform irreversible interventions in patients with possibility of functional return for 6-12 months
 - Surgery often not necessary in paramedian positioning
Evaluation – Unilateral Paralysis

- Manual Compression Test
Evaluation – Unilateral Paralysis

- Assess extent of posterior glottic gap
- Consider consenting patient for both anterior and posterior medialization procedures
Management – Unilateral Paralysis

○ Type of Anesthesia
 ● Local – allows patient to phonate
 ○ Careful administration of IV sedation
 ○ Internal superior laryngeal nerve block at the thyrohyoid membrane
 ○ Glossopharyngeal nerve block at the inferior pole of the tonsils
 ○ Flexible endoscope allows visualization
 ● Laryngeal Mask
 ● General
Management – Unilateral Paralysis
Management – Unilateral Paralysis
Vocal Cord Injection

- Adds fullness to the vocal cord to help it better appose the other side
- Injection technique is similar regardless of material used
- Injection into thyroarytenoid/vocalis
- Injection can be done endoscopically or percutaneously
- Poor correction of posterior glottic gap
Management – Unilateral Paralysis
Vocal Cord Injection

- External landmarks – several mm anterior to oblique line horizontally, midpoint between thyroid notch and inferior thyroid border vertically
Management – Unilateral Paralysis
Vocal Cord Injection
Management – Unilateral Paralysis
Vocal Cord Injection
Management – Unilateral Paralysis
Vocal Cord Injection
Management – Unilateral Paralysis
Vocal Cord Injection - Materials

- Teflon
- Fat
- Collagen
 - Autologous Collagen
 - Homologous Micronized Allo derm (Cymetra)
 - Heterologous Bovine Collagen (Zyderm)
- Hyaluronic Acid
- Calcium Hydroxyapatite gel (Radiance FN)
- Polydimethylsiloxane gel (Bioplastique)
Teflon - the first biosynthetic material specifically designed for implantation

- **Advantages**
 - Inexpensive and easily administered
 - Immediate voice improvement

- **Disadvantages:**
 - Irreversible
 - Granuloma formation leads to vocal cord stiffening
 - Migration
 - Useful mainly in terminal patients
Management – Unilateral Paralysis
Vocal Cord Injection

- Fat
 - Use first reported by Brandenberg 1987
 - Overcorrection is necessary – about 50%
 - Resorption in months to years
Management – Unilateral Paralysis
Vocal Cord Injection

○ Fat Injection
 ● Hsiung et al. divided failures into two categories
 ○ Early
 ● failure of fat to soften scarred segments
 ● large glottal gap
 ● large posterior defect
 ○ Late
 ● due to absorption of fat
Management – Unilateral Paralysis
Vocal Cord Injection

- Homologous Collagen
 - Cymetra (LifeCell Corp.)
 - Micronized AlloDerm
 - Reconstituted with Lidocaine or Saline
 - Lasts 3-6 months
 - Requires low volume (~0.2ml) when placed just deep to the vocal ligament in the vocalis muscle (varies with dilution)
 - Injection into superficial lamina propria must be avoided or rigidity of cord will occur
Management – Unilateral Paralysis
Vocal Cord Injection

- Heterologous Collagen
 - Zyderm
 - Bovine collagen
 - May cause immune reaction in 1-2% of cases
 - Does not last as long as micronized allogenic alloderm (Cymetra)
Management – Unilateral Paralysis
Vocal Cord Injection

- Calcium Hydroxyapatite gel
 (Radiance FN; BioForm)
 - Composed of small spherules of CaHydroxyapatite
 - No granuloma formation
 - Currently under study

- Polydimethylsiloxane gel
 (Bioplastique; Bioplasty)
 - Widely used in Europe, not approved for U.S.
 - Sustained phonatory improvement up to 7 years
Management – Unilateral Paralysis
Type I Thyroplasty

- First described by Payr and reintroduced by Ishiki in 1974
- Variety of materials used for implants
 - Autologous Cartilage
 - Silastic
 - Hydroxyapatite
 - Gore-Tex
 - Titanium
- Useful for anterior glottic gap
Management – Unilateral Paralysis
Type I Thyroplasty

○ Advantages:
 ● Permanent, but surgically reversible
 ● No need to remove implant if vocal function returns
 ● Excellent at closing anterior gap

○ Disadvantages:
 ● More invasive
 ● Poor closure of posterior glottic gap
Management – Unilateral Paralysis
Type I Thyroplasty – Gore-Tex

- Gore-Tex
 - Homopolymer of polytetrafluoroethylene in minute beads in a fine fiber mesh
 - Minimal tissue reaction
 - Cut into long 3mm wide sheet for use
 - Thyrotomy window drilled to 6-8mm long using a 2mm burr 1cm posterior to midline and 3 or 4mm above lower edge of thyroid
 - Undermining of perichondrium 4-5mm posterior and inferior to window prior to insertion
 - Insertion under endoscopic visualization with patient awake
Management – Unilateral Paralysis
Type I Thyroplasty – Gore-Tex
Complications
- Extrusion/Displacement (Intraoperative vs Postop)
- Misplacement – most often superior
- Infection
- Undercorrection – important to overcorrect by 1-2mm

Controversies
- Location of graft placement
- Status of inner perichondrium
 - Many series have shown low extrusion rate with sacrificed perichondrium
Management – Unilateral Paralysis
Type I Thyroplasty – Variations

- Many variations have been proposed to address the posterior gap
- When arytenoid is displaced, the implant is permanent because of scarring in the CA joint
- Hong et al.
Management – Unilateral Paralysis

Results

(These movies may not be available online)
Management – Unilateral Paralysis

Arytenoid Adduction

- Arytenoid Adduction
 - First described by Ishiki with modifications by Zeitels and others
 - Addresses posterior glottic gap by pulling arytenoid into adducted position
 - Difficult to predict which patients will benefit preoperatively.
 - Most advocate use in combination with anterior medialization
Management – Unilateral Paralysis

Arytenoid Adduction
Management – Unilateral Paralysis
Arytenoid Adduction

A

B
Endoscopic Approaches

Suture Placed to Cricoid Cartilage
- Simulates action of lateral cricoarytenoid

Zeitels Modification – Arytenopexy
- Presumably allows a more physiologic positioning of the arytenoid
- Involves suturing the arytenoid in a more posterior and medial position to allow more tension on flaccid cord
- Cricothyroid subluxation mimics action of cricothyroid muscle
- Modifications should be used selectively
Management – Unilateral Paralysis
Arytenoid Adduction

- Complications
 - Sutures too tight – may displace arytenoid complex anteriorly, adversely affecting voice
 - Entry of piriform sinus
Management – Unilateral Paralysis
Reinnervation

- Results in synkynetic tone of vocal cord
- Ansa to Recurrent Laryngeal Nerve
- Ansa to Omohyoid to Thyroarytenoid
Management – Unilateral Paralysis
Reinnervation

- Hypoglossal to recurrent laryngeal nerve
- Crossed nerve grafts or wire conduction prostheses from one muscle to its paralyzed counterpart are being researched
Management
Bilateral Abductor Paralysis

- Patients exhibit lack of abduction during inspiration, but good phonation
- Maintenance of airway is the primary goal
- Airway preservation often damages an otherwise good voice
Management
Bilateral Abductor Paralysis

- Tracheostomy
 - Gold standard
 - Most adults will require this
 - Speaking valves aid in phonation
- Laser Cordectomy
- Laser Cordotomy
- Woodman Arytenoidectomy
Bilateral Abductor Paralysis

- **Phrenic to Posterior Cricoarytenoid anastamosis**
 - Allows abduction during inspiration
 - Preserves voice when successful

- **Electrical Pacing**
 - Timed to inspiration with electrode placed on posterior cricoarytenoid
 - Long-term efficacy not yet shown
Bilateral Adductor Paralysis

- Patients have good airway with breathy voice
- Goal is to prevent aspiration and improve phonation while preserving airway
- Aforementioned medialization techniques can be applied
- Patients may need tracheostomy if over-medialized
Conclusions – Key Points

- **Anatomy**
 - TVC positioned at about ½ vertical height of the anterior thyroid cartilage and is anterior to the oblique line

- **Causes of Vocal Cord Paralysis**
 - Iatrogenic (Surgery and intubation #1)

- **Evaluation**
 - Realize that some function may return with time (6-12 months)
Conclusions – Key Points

- Management – Unilateral Paralysis
 - Anterior and Posterior Glottic gap must be addressed
 - Arytenoid adduction is irreversible
 - Continued improvement up to 1yr after Type I thyroplasty

- Management – Bilateral Paralysis
 - Preservation of airway is most important goal
Vocal Cord Paralysis
Medialization Laryngoplasty

Shashidhar S. Reddy, MD, MPH
Faculty Sponsor: Anna Pou, MD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
April 2004