David Gleinser, MD
Faculty Mentor: Dr. Tomoko Makishima, MD, PhD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation – June 29, 2009
Facial Nerve Anatomy – Intracranial Segment

- The portion of the nerve from the brainstem to the internal auditory canal
- Made up of two components
 1. Motor root
 2. Nervus intermedius – carries preganglionic parasympathetic fibers and special afferent sensory fibers
 - Both join at the CPA/IAC to form the common facial nerve
Facial Nerve Anatomy – Intratemporal Segments

- **Meatal**
 - Portion of the facial nerve traveling from porus acusticus to the meatal foramen of IAC
 - Travels in the anterior superior portion of the IAC (7-UP, 8-Down)
 - Posterior superior – superior vestibular nerve
 - Posterior inferior – inferior vestibular nerve
 - Anterior inferior – cochlear nerve

- **Labyrinthine**
 - From fundus to the geniculate ganglion
 - Runs in the narrowest portion of the IAC (0.68mm in diameter)
 - Greater superficial petrosal nerve comes off at this point

- **Tympanic**
 - Runs from geniculate ganglion to the second genu
 - Highest incidence of dehiscence here (40-50% of population)

- **Mastoid**
 - From second genu to stylomastoid foramen
 - Gives off branches to the stapedius muscle and the chorda tympani
Cochlea
vestibule
LSC
PSC
Stapes
Pyramidal process
Stapedeal tendon
Cochlea
Round Window niche
PSC
S
Sinus tympani
Tensor tympani
Facial Nerve Anatomy – Extratemporal Segments

• Nerve exits stylomastoid foramen
 – Postauricular nerve - external auricular and occipitofrontalis muscles
 – Branches to the posterior belly of the digastric and stylohyoid muscles
• Enters parotid gland splitting it into a superficial and deep lobe
• Pes Anserinus
 – Branching point of the extratemporal segments in the parotid
 – To Zanzibar By Motor Car
 » Temporal
 » Zygomatic
 » Buccal
 » Marginal mandibular
 » Cervical
Facial Nerve Components

- Motor
 - Supplies muscles of facial expression
 - Stylohyoid muscle
 - Posterior belly of digastric
 - Stapedius muscle
 - Buccinator

- Sensory
 - Taste to anterior 2/3 of the tongue
 - Sensation to part of the TM, the wall of the EAC, postauricular skin, and concha

- Parasympathetic
 - Supplies secretory control to lacrimal gland and some of the seromucinous glands of the nasal and oral cavities
 - Chorda tympani carries parasympathetics to the submandibular and sublingual glands
Components of a Nerve

- **Endonerium**
 - Surrounds each nerve fiber
 - Provides endoneural tube for regeneration
 - Much poorer prognosis if disrupted

- **Perinerium**
 - Surrounds a group of nerve fibers
 - Provides tensile strength
 - Protects nerve from infection
 - Pressure regulation

- **Epinerium**
 - Surrounds the entire nerve
 - Provides nutrition to nerve
Sunderland Nerve Injury Classification

- Class I (Neuropraxia)
 - Conduction block caused by cessation of axoplasmic flow
 - What one experiences when their leg “falls asleep”
 - Full recovery
- Class II (Axonotmesis)
 - Axons are disrupted
 - Wallerian degeneration occurs distal to the site of injury
 - Endoneural tube still intact
 - Full recovery expected
- Class III (Neurotmesis)
 - Neural tube is disrupted
 - Poor prognosis
 - If regeneration occurs, high incidence of synkinesis (abnormal mass movement of muscles which do not normally contract together)
Sunderland Nerve Injury Classification

- **Class IV**
 - Epineurium remains intact
 - Perineurium, endoneurium, and axon disrupted
 - Poor functional outcome with higher risk for synkinesis

- **Class V**
 - Complete disruption
 - Little chance of regeneration
 - Risk of neuroma formation
Facial Nerve Trauma - Overview

- Second most common cause of FN paralysis behind Bell’s Palsy

- Represents 15% of all cases of FN paralysis

- Most common cause of traumatic facial nerve injury is temporal bone fracture
Temporal Bone Fracture

- 5% of trauma patients sustain a temporal bone fracture
- Three types
 » Longitudinal
 - Most common type – 70-80%
 - Fracture line parallel to long axis of petrous pyramid
 - Secondary to temporoparietal blunt force
 - Results in facial nerve paralysis in 25% of cases
 » Transverse
 - 10-20% of fractures
 - Fracture line perpendicular to long axis of petrous pyramid
 - Secondary to frontal or occipital blow
 - Results in facial nerve paralysis in 50% of cases
 » Mixed
 - 10% of temporal bone fractures
Temporal Bone Fracture

Chang and Cass (1999) reviewed facial nerve pathology of 67 longitudinal fractures and 11 transverse fractures where facial nerve paralysis was known

- **Longitudinal findings**
 - 76% of cases showed bony impingement or intraneural hematoma
 - 15% showed a transected nerve
 - 9% either had no pathologic findings or just neural edema

- **Transverse findings**
 - 92% of cases showed transection
 - 8% showed bony impingement or hematoma
Penetrating Trauma

- Typically results in FN injury in the extratemporal segments
- Gun shot wounds cause both intratemporal and extratemporal injuries
 - GS wounds to temporal bone result in FN paralysis in 50% of cases
 - Mixture of avulsion and blunt trauma to different portions of the nerve
 - Much worse outcome when comparing GS related paralysis to TB fracture related paralysis
Iatrogenic Trauma

- Surgical
 - Most common overall surgery with FN injury is parotidectomy
 - Most common otologic procedures with FN paralysis
 - Mastoidectomy – 55% of surgical related FN paralysis
 - Tympanoplasty – 14%
 - Exostoses removal – 14%
 - Mechanism - direct mechanical injury or heat generated from drilling
 - Most common area of injury - tympanic portion due to its high incidence of dehiscence in the this area, and its relation to the surgical field
 - Unrecognized injury during surgery in nearly 80% of cases

- Birth trauma
 - Forceps delivery with compression of the facial nerve against the spine
Work-up: History

- **History**
 - Mechanism – recent surgery, facial/head trauma
 - Timing – progressive loss of function or sudden loss
 - Transected nerve -> sudden loss
 - Intraneural hematoma or impingement -> progressive loss (better prognosis)
 - Associated symptoms – hearing loss or vertigo hint more toward a temporal bone injury
Work-up: Physical

- Physical
 - Perform a full head and neck examination
 - Facial asymmetry
 - Signs of facial injury (lacerations, hematomas, bruising)
 - Exam head/scalp for signs of injury to help guide you to vector of force if head trauma is involved
 - Otoscopic examination is a must
 - Canal lacerations or step-offs
 - Hemotympanum, TM perforation, drainage of blood or clear fluid from middle ear
 - Tunning fork tests (Weber/Rinne) with a 512 Hz fork can help determine if there is a conductive hearing loss
<table>
<thead>
<tr>
<th>Grade</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Normal facial function in all areas</td>
</tr>
</tbody>
</table>
| II. Mild dysfunction | • Slight weakness noticeable on close inspection
 | • Forehead - Moderate-to-good function |
| | • Eye - Complete closure with minimal effort |
| | • Mouth - Slight asymmetry |
| III. Moderate dysfunction | • Obvious but not disfiguring difference between the two sides
 | • Forehead - Slight-to-moderate movement |
| | • Eye - Complete closure with maximum effort |
| | • Mouth - Slightly weak with maximum effort |
| IV. Moderately severe dysfunction | • Obvious weakness and/or disfiguring asymmetry
 | • Forehead – No motion |
| | • Eye - Incomplete closure |
| | • Mouth - Asymmetric with maximum effort |
| V. Severe dysfunction | • Only barely perceptible motion
 | • At rest, asymmetry |
| | • Forehead – No movement |
| | • Eye - Incomplete closure |
| | • Mouth - Slight movement |
| VI. Total paralysis | No movement |
Work-up: Radiologic Tests

- CT scans
 - Bony evaluation
 - Locate middle ear, mastoid, and temporal bone pathology
- Gadolinium enhanced MRI
 - Utilized for soft tissue detail and CPA pathology
Facial Nerve Testing

- Used to assess the degree of electrical dysfunction
- Can pinpoint the site of injury
- Helps determine treatment
- Can predict recovery of function – partial paralysis is a much better prognosis than total paralysis
- Divided into two categories
 - Topographic tests
 - Tests function of specific facial nerve branches
 - Do not predict potential recovery of function
 - Rarely utilized today
 - Electrodiagnostic tests
 - Utilize electrical stimulation to assess function
 - Most commonly used today
Nerve Excitability Test (NET)

• Compares amount of current required to illicit minimal muscle contraction - normal side vs. paralyzed side
• How it is performed
 • A stimulating electrode is applied over the stylomastoid foramen
 • DC current is applied percutaneously
 • Face monitored for movement
 • The electrode is then repositioned to the opposite side, and the test is performed again
• A difference of 3.5 mA or greater between the two sides is considered significant
• Drawback - relies on a **visual end point (subjective)**
Maximal Stimulation Test (MST)

- Similar to the NET, except it utilizes maximal stimulation rather than minimal
- The paralyzed side is compared to the contralateral side
- Comparison rated as equal, slightly decreased, markedly decreased, or absent
 - Equal or slightly decreased response = favorable for complete recovery
 - Markedly decreased or absent response = advanced degeneration with a poor prognosis
- Drawback - Subjective
Electroneurography (ENoG)

- Thought to be the most accurate of the electrodiagnostic tests
- How it works:
 - Bipolar electrodes deliver an impulse to the FN at the stylomastoid foramen
 - Summation potential is recorded by another device
 - The peak to peak amplitude is proportional to number of intact axons
 - The two sides are compared as a percentage of response
- 90% degeneration – surgical decompression should be performed
- Less than 90% degeneration within 3 weeks predicts 80 - 100% spontaneous recovery
- Disadvantages: discomfort, cost, and test-retest variability
Electromyography

- Determines the activity of the muscle itself
- How it works
 - Needle electrode is inserted into the muscle, and recordings are made during rest and voluntary contraction
- Normal = biphasic or triphasic potentials
- 10-21 days post injury - fibrillations
- 6-12 weeks prior to clinical return of facial function – polyphasic potentials are recordable
 - Considered the earliest evidence of nerve recovery
- Does not require comparison with normal side
Approach to Treatment and Treatment Options - Iatrogenic Injury

• If transected during surgery
 – Explore 5-10mm of the involved segment
 – Stimulate both proximally and distally
 • Response with 0.05mA = good prognosis; further exploration not required
 • If only responds distally = poor prognosis, and further exposure is warranted

• If loss of function is noted following surgery, wait 2-3 hours and then re-evaluate the patient. This should be ample time for an anesthetic to wear off
 – Waited time and still paralysis
 • Unsure of nerve integrity – re-explore as soon as possible
 • Integrity of nerve known to be intact
 – High dose steroids – prednisone at 1mg/kg/day x 10 days and then taper
 – 72 hours – ENoG to assess degree of degeneration
 » >90% degeneration – re-explore
 » <90% degeneration – monitor
 - if worsening paralysis occurs re-explore
 - if no regeneration, but no worsening, timing of exploration or whether to is controversial
Blunt Trauma with FN Paralysis

- Birth trauma and Extratemporal blunt trauma
 - Recommend no surgical exploration
 - >90% expected to regain normal/near normal recovery
- Complete paralysis following temporal bone fracture
 - Likely nerve transection
 - Surgical exploration
- Partial or delayed loss of function
 - Approach similar to iatrogenic partial or delayed loss
 - High dose steroids
 - ENoG 72 hours
 - >90% degeneration – explore
 - < 90% degeneration – can monitor and explore at later date depending on worsening or failure to regenerate
Penetrating Trauma with FN Paralysis

- High likelihood of transection – exploration warranted
- If extratemporal
 - Do not explore if injury occurs distal to the lateral canthus
 - Nerve endings are very small
 - Rich anastomotic network from other branches in this area
 - Exploration should occur within 3 days of injury
 - Distal branches can still be stimulated - easier to locate them
- Delayed exploration with gunshot wounds is recommended
 - GS results in extensive nerve damage
 - Waiting a little longer to identify the extent of injury can be beneficial in forming a surgical plan
Intratemporal Approaches to Decompression

• Nerve may be injured along multiple segments
 – localize injured site pre-operatively
 – Full exposure of the nerve from IAC to the stylomastoid foramen if can’t localize

• Approach to full exposure is based on patient’s auditory and vestibular status
 – Intact - Transmastoid/Middle cranial fossa approach
 – Absent – Transmastoid/Translabyrinthine approach

• Diamond burs and copious irrigation is utilized to prevent thermal injury

• Thin layer of bone overlying the nerve is bluntly removed

• Whether to perform neurolysis or not to open the nerve sheath is debateable
 – Recommended to drain hematoma if identified
Acute vs. Late Decompression - Controversial

- Quaranta et al (2001) examined results of 9 patients undergoing late nerve decompression (27-90 days post injury) who all had >90% degeneration
 - 7 patients achieved HB grade 1-2 after 1 year
 - 2 achieved HB grade 3
 - Concluded that patients may still have a benefit of decompression up to 3 months out

- Shapira et al (2006) performed a retrospective review looking at 33 patients who underwent nerve decompression. They found no significant difference in overall results between those undergoing early (<30 days post-injury) vs. late (>30 days post-injury) decompression

- Most studies like these have been very small, and lack control groups. Some studies have shown improvements with decompression occurring 6-12 months post-injury, but further evidence is needed
Nerve Repair - Overview

- Recovery of function begins around 4-6 months and can last up to 2 years following repair
- Nerve regrowth occurs at 1mm/day
- Goal is tension free, healthy anastomosis
- Rule is to repair earlier than later - controversial
 - After 12-18 months, muscle reinnervation becomes less efficient even with good neural anastomosis
 - Some authors have reported improvement with repairs as far out as 18-36 months
 - May and Bienstock recommend repair within 30 days, but others have found superior results if done up to 12 months out

- 2 weeks following injury -> collagen and scar tissue replace axons and myelin
 - Nerve endings must be excised prior to anastomosis for this reason if this far out
Primary Anastomosis

• Best overall results of any surgical intervention
• Done if defect is less than < 2cm
 – Mobilization of the nerve can give nearly 2cm of length
 – With more mobilization comes devascularization
• Endoneurial segments must match - promotes regeneration
• Ends should be sutured together using three to four 9-0 or 10-0 monofilament sutures to bring the epineurium or perineurium together (which one you bring together does not matter)
Grafting and Nerve Transfer - Overview

- Approach is based on availability of proximal nerve ending
- Performed for defects > 2cm
- Results in partial or complete loss of donor nerve function
Proximal and Distal Segments Available

• Great auricular nerve
 – Usually in surgical field
 – Located within an incision made from the mastoid tip to the angle of the mandible
 – Can only harvest 7-10cm of this nerve
 – Loss of sensation to lower auricle with use

• Sural nerve
 – Located 1 cm posterior to the lateral malleolus
 – Can provide 35cm of length
 – Very useful in cross facial anastomosis
 – Loss of sensation to lateral calf and foot

• Ansa Cervicalis
 – only utilized if neck dissection has been performed

• 92-95% of these patients have some return of facial function
 – 72-75% have good results (HB 3 or above)
Only Distal Segment Available

- Requires that the patient have an intact distal nerve segment and facial musculature suitable for reinnervation
 - Determined by EMG and/or muscle biopsy

- Hypoglossal nerve
 - Direct hypoglossal-to-facial graft
 - Distal branch of facial nerve is attached to hypoglossal nerve
 - 42-65% of patient’s expected to experience decent symmetry and tone
 - Complications – atrophy of ipsilateral tongue, difficulties with chewing, speaking, and swallowing
 - Partial hypoglossal-to-facial jump graft
 - Uses a nerve cable graft, usually the sural nerve, to connect the distal end of the facial nerve to a notch in the hypoglossal nerve
 - Much fewer complications, but increased time
 - May compared the results of direct VII-XII graft to the VII-XII jump graft
Comparison of Direct Hypoglossal Grafting vs. Jump Grafting

- **Jump graft**
 - 8% of patients experienced permanent complications
 - 41% obtained good movement with less synkinesis
 - Longer recovery time (9-12 months prior to some function)

- **Direct graft**
 - 100% permanent complications
 - Stronger motor function
 - Less recovery time
Only Distal Segment Available – Cont.

- **Facial-to-Facial Graft**
 - **Options**
 - Single contralateral branch to distal nerve anastomosis
 - Multiple anastomoses from segmental branches to segmental branches
 - Best described is the use of a sural nerve graft to connect the buccal branch on the contralateral side to the distal nerve stump
 - Most do not recommend this technique
 - Weakness caused to the contralateral facial nerve
 - Lack of power to control musculature resulting in poor results
Early Facial Nerve Monitors

- Early monitors relied on sensing muscle movement – pressure or strain gauge sensor
- Not used much now - large threshold must be reached to illicit movement
- Poorer response to facial nerve stimulation than electrophysiologic techniques
FN Monitors - Electromyography

- Electrodes detect differences in electrical potential associated with a depolarizing current
- Graphic signal and acoustic signal recorded
- 2 types of responses
 - Repetitive responses
 • Represent irritability of the nerve secondary to nerve injury
 • Used to warn the surgeon of injury or impending injury
 - Nonrepetitive responses
 • Single responses secondary to direct mechanical or electrical stimulation
 • Used to map the course of the nerve
Uses for Today’s Monitors

• Identify the nerve
 – Mechanical or electrical stimulation will produce nonrepetitive responses – how we find the nerve
 – Field should be free of fluids for electrical stimulation as fluid causes diversion of current

• Mapping
 – Once located, nerve can then be mapped by repeated stimulation
 – Bipolar stimulation
 • More precise
 • More false-negatives than monopolar technique

• Injury identification
 – Relies on repetitive responses
 – Allows surgeon to alter action
Uses Continued

- **Prognostic Information – Two different measures**
 - **Stimulated compound action potential**
 - Least used of the two
 - Hard to reproduce good results in studies due to variability in electrode placement
 - Utilizes a 0.4mA stimulus
 - If compound action potential is > 500-800 microvolts likely will have HB I-II
 - As drop below 500 microvolts, the outcome becomes poorer
 - **Nerve stimulus threshold**
 - Utilizes an electrical stimulus applied to the proximal end of the nerve
 - If nerve responds with a stimulus that is < 0.3mA, HB I-II is likely outcome
 - If > 0.3mA stimulus required to stimulate nerve, likely HB III-V
Does Monitoring Make A Difference? – CPA Tumors

- Dickinson and Graham - 1990
 - Reviewed CPA tumor cases
 - 38 cases done without monitoring
 - 29 cases with pressure or strain gauge sensor
 - 41 cases with EMG
 - Results – Poor outcome (HB V-VI)
 - Unmonitored – 37% of cases
 - Pressure or strain gauge sensor – 21%
 - EMG – 4%
 - Confounder – higher incidence of larger tumors in unmonitored group
Does Monitoring Make A Difference? – Middle Ear Surgery

- Pensak et al looked at 250 cases involving surgery on chronic middle ear disease - all were monitored
 - 100% of cases – facial nerve was grossly identified
 - 82% confirmed nerve with monitor stimulation
 - In cases where nerve was exposed
 - Monitor alerted surgeon to this in 93% of cases

- Silverstein and Rosenberg examined 500 cases in which facial nerve monitoring was used
 - No cases of facial nerve injury
 - Reported the monitor prevented injury in 20 cases
Does Monitoring Make A Difference? – Parotid Surgery

- Terrell et al. examined 117 cases – 56 with monitor and 61 without monitor
 - Statistically significant decrease in rate of post-operative paresis
 - No difference in long term outcome
 - Longer OR times associated with decreased rates of post-operative paresis

- Witt reviewed 53 cases – 33 with monitor and 20 without
 - No difference in paresis rates
 - No difference in long term outcome
Does Repetitive Stimulation Lead to Injury?

- Babin et al examined the use of pulsed current stimulation of cat facial nerves
 - Utilized pulse of 1mA applied to the nerve every 3 seconds for 1 hour
 - Noted a transient decrease in nerve sensitivity following cessation of stimulus
 - No permanent injury reported

- Hughes et al examined the use of pulsed and constant current models for stimulation of mouse sciatic nerve
 - In all cases in which pulsed current was utilized, no injury reported
 - In some cases in which constant current was utilized, mild injury and axonal degeneration occurred
 - Nearly all monitors now utilize pulsed currents
Sources