Pediatric Syndromal Hearing Loss

Ryan Ridley, MD
Shraddha Mukerji, MD
University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
September 24, 2009
OUTLINE

• Introduction
• Basic Mendelian Genetics
• Approach to the syndromic child
• Specific syndromes
1/1,000 Born Deaf

50% Hereditary-genetic

1/3 syndromic
 - Dominant
 - Waardenburg
 - BOR
 - Stickler’s
 - NF2
 - Treacher Collins
 - Recessive
 - Usher
 - Pendred
 - Jervell/Lange-Nielsen
 - X-linked
 - Alport

2/3 nonsyndromic
 - 23% dominant
 - 75% recessive
 - 2% X-linked
 - 1% mitochondrial

50% acquired prenatally
 ½ idiopathic
 Intrauterine infection (TORCHS)
 Low birth weight
 Hypoxia
 Hyperbilirubinemia
 Non-genetic syndromes
 - Goldenhar’s
 - FAS

X-linked
 - 23% dominant
 - 75% recessive
 - 2% X-linked
 - 1% mitochondrial
Approach to the Syndromal Patient

• Family History
 – Is there a FHx reported?
 – Associated clinical features in the family?
 – Do not assume parents hear normally
 • Eval parents’ hearing
 – Inquire about hearing of other family members
 – Consanguinity?

• Birth/developmental Hx
 – Rubella status of mother
 – Motor delay
 – Global developmental delay
Approach to the Syndromal Patient

Physical exam

- External ears (size, shape)
- Eyes (color, spacing, etc)
- Neck (cyst, fistulas, length)
- Pigmentation
- Hands/feet/fingers/toes
- How does child look at first glance?
 - Dysmorphic or is this a family trait?
- Facial asymmetry

Investigations

- Audiogram of 1st-degree relatives
- Ophthalmology exam
- Serologies (TORCH)
- Urinalysis
- EKG
- Chromosome analysis
- CT temporal bone
Dominant Inheritance

Deaf x Hearing

Deaf Deaf Hearing Hearing
Recessive Inheritance

Hearing × Hearing

Deaf Hearing Hearing Hearing
X-linked Inheritance

Hearing X-linked Inheritance Hearing

Human offspring from a crossing:
- Hearing
- Hearing
- Hearing
- Deaf

Chromosomal representation:
- X chromosome
- Y chromosome
- X chromosome
Autosomal Dominant Syndromes
Waardenburg Syndrome

• Epidemiology
 – 1 in 20,000 to 1 in 40,000
 – 3% of congenitally deaf children

• Etiology
 – PAX3 mutation (type 1 and 3)
 – MITF mutation (type 2)
 – EDNRB mutation (type 4)
Waardenburg Syndrome

- General clinical characteristics
 - Dystopia canthorum
 - Pinched nose
 - Heterochromia iridis
 - Abnormal pigmentation of skin and hair
 - Broad nasal bridge and hypoplastic alae nasi
 - High arched or cleft palate

http://dermatology.cdlib.org/123/case_presentations/waardenburg/1.jpg
Waardenburg Syndrome

Otologic characteristics
- Hypoplastic ear cartilage
- Abnormal vestibular function (type 2)
- SNHL
 - Bilateral most common
 - Low-mid frequency loss
 - CI can be expected to yield improved speech perception and speech intelligibility capabilities

4 subtypes
- Type 1: every patient exhibits dystopia canthorum
- Type 2: void of dystopia canthorum, but vestibular abnormalities present
- Type 3: Type 1 + upper extremity abnormalities + unilateral upper lid ptosis
- Type 4: Type 2 + pigmentation abnormalities + Hirschsprung disease
Branchio-Oto-Renal Syndrome

• Epidemiology
 – 2% of profoundly deaf children

• Etiology
 – EYA1 gene mutation
 – High penetrance, variable expressivity

• Diagnosis
 – At least 3 major criteria
 – Two major criteria and at least two minor criteria
 – One major criteria with one first-degree relative meeting BOR criteria
<table>
<thead>
<tr>
<th>Major criteria</th>
<th>Minor criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branchial anomalies</td>
<td>External ear anomalies</td>
</tr>
<tr>
<td>Deafness</td>
<td>Middle ear anomalies</td>
</tr>
<tr>
<td>Preauricular pits</td>
<td>Inner ear anomalies</td>
</tr>
<tr>
<td>Renal anomalies</td>
<td>Preauricular tags</td>
</tr>
<tr>
<td></td>
<td>Other: facial asymmetry, palate abnormalities</td>
</tr>
</tbody>
</table>
Branchio-Oto-Renal Syndrome

- Hearing impairment
 - estimated to be present in 70-93%
 - Variable age of onset
 - Mild to profound severity
 - SNHL, CHL, or mixed
 - Mondini’s dysplasia and stapes fixation can also be present

- Other characteristics
 - cup-shaped pinnae,
 - preauricular pits/tags
 - Lacrimal duct stenosis
 - branchial cleft fistulae
 - bilateral renal anomalies.
 - deep overbite and a long, narrow face
Branchio-Oto-Renal Syndrome

Kochhar, et al. 2007
Stickler Syndrome

General characteristics

- Progressive SNHL
- Cleft palate,
- abnormal development of the epiphysis,
- vertebral abnormalities/osteoaarthritus.
- Genetics
 - COL2A1, COL11A1, and COL11A2 mutations

Subtypes

- Type 1
 - progressive myopathy,
 - retinal detachment
 - Vitreoretinal degeneration
- Type 2:
 - no retinal detachment
- Type 3
 - eye and ear findings present in type 1 but has facial abnormalities
Treacher Collins Syndrome (TC)

- Fraceschetti-Zwahlen-Klein Syndrome or Mandibulo-Facial Dysostosis
- Etiology
 - TCOF gene mutation on 5q32-q33.1
- Typical features
 - microtia and malformed ears
 - midface hypoplasia
 - micrognathia
 - downslanting palpebral fissures
 - coloboma of outer 1/3 of lower eyelids.
Treacher Collins Syndrome (TC)

• Airway
 – Upper airway narrowing a major issue
 – Nasopharynx 50% smaller than normal
 – More prone to OSA and SIDS

• Ears/Hearing
 – Usually CHL
 • Absent/stenotic EAC
 • Middle ear anomalies
 – as monopodal stapes
 – ankylosed foot plate
 – malformed incus
 – cochlea and vestibule abnormalities
 – SNHL
 • Affects high frequencies
Treacher Collins Syndrome (TC)
Neurofibromatosis Type 2 (NF2)

• Epidemiology
 – Prevalence of 1 in 210,000 people

• Etiology
 – NF 2 tumor suppressor gene mutation on chromosome 22

• Diagnosis
 – Manchester criteria
 – Audiometry
 – MRI with gadolinium
Table 1
Manchester criteria for the diagnosis of NF2 (Baser et al [10])

| A. Bilateral vestibular schwannomas |
| B. First-degree relative with NF2 AND unilateral vestibular schwannoma OR any two of the following: meningioma, schwannoma, glioma, neurofibroma, juvenile posterior subcapsular lens opacity |
| C. Unilateral vestibular schwannoma AND any two of the following: Meningioma, schwannoma, glioma, neurofibroma, posterior subcapsular lenticular opacities |
| D. Multiple meningiomas (two or more) AND unilateral vestibular schwannoma OR any two of the following: schwannoma, glioma neurofibroma, cataract |
NF 2 Clinical Features

- Meningiomas
- Ependymomas
- Gliomas
- Lens opacities
- Café-au-lait spots (few)
- Cranial nerve, spinal and peripheral nerve schwannomas

Otologic
- Bilateral vestibular schwannomas
- Tinnitus, disequilibrium, cranial nerve symptoms
- Usually present in 2nd and 4th decade
- Many present with unilateral SNHL instead of bilateral SNHL
- Children < 15 yo often present w/o HL or schwannoma development
- Rehab
 - Hearing aids for moderate HL
 - Success with CI s/p tumor removal
 - Neff and Welling, Oto Clin N Amer, 2005
Osteogenesis Imperfecta (OI)

- **Triad**
 - Bone fragility
 - Blue sclera
 - Hearing impairment

- **Incidence**
 - 1 in 20,000 - 1 in 30,000

- **Etiology**
 - Mutation in *COL1A1* or *COL1A2*
 - Type I collagen defect

www.gfmer.ch/.../gendis_detail_list.php?cat3=742
OI Clinical Characteristics

- Hypermobile joints
- Short stature
- Triangular face
- Cardiovascular abnormalities
- Skin disorders

- Hearing Impairment
 - Usually presents in 2nd or 3rd decade
 - Mixed (prevalence 26-78%)
 - CHL due to thickened, fixed stapes footplate
 - SNHL
 - cochlear hair cell atrophy
 - Atrophy of stria vascularis
 - Bony formation around cochlea
 - Stapedotomy may facilitate hearing aid rehab
 - Swinnen et al., 2009 Laryngoscope
Osteogenesis Imperfecta

Otospongiosisis
Autosomal Recessive Syndromes
Usher Syndrome

• Epidemiology
 – Most common autosomal recessive cause of HL
 – incidence ~ 3-5 per 100,000 in the general population
 – 1-10% among profoundly deaf children
 – Approximately 50% of blind and deaf in US

• Etiology
 – USH1 and USH2 gene mutations
Usher Syndrome

• 3 Main subtypes
• Type 1
 – severe hearing loss and vestibular dysfunction.
 – onset of retinitis pigmentosa in childhood
• Type 2
 – Retinitis pigmentosa begins after childhood.
 – Mild to moderate hearing loss
 – Normal vestibular function.
• Type 3,
 – Progressive hearing loss & vestibular dysfunction.
 – Retinitis pigmentosa can occur anytime in life.
Pendred Syndrome

• Characterized by hearing impairment & abnormal iodine metabolism.

• Etiology/Pathogenesis
 – SLC26A4 (PDS) gene mutation
 – Encodes protein which helps regulate iodine and chloride ion transport

• Characteristics
 – Euthyroid goiter
 • Diagnose with thyroid function tests
Pendred Syndrome

• Hearing
 – Severe SNHL
 • present at birth or progressive
 – Inner ear abnormalities
 • Mondini’s
 • EVA

Journal of Clinical Endocrinology & Metabolism
Jervell and Lange-Nielsen Syndrome

• Incidence:
 – 1.6-6 cases per million in certain parts of Europe
 – 6 per 1,000 in congenitally deaf children

• Characterized by severe-profound hearing loss and prolongation of the QT interval on EKG
 – syncopal episodes due to cardiac conduction defect

• Can manifest as early as the 2nd or 3rd year of life
• Should suspect in a child with hearing loss and seizures of unknown origin and/or a family history of sudden death
Jervell and Lange-Nielsen Syndrome

• Etiology
 – Cardiac conduction defects attributed to mutations in potassium channel genes
 • loci on the KVLQT1 and KCNE1 genes located on chromosomes 11p15.5 and 21q22 respectively.

• Hearing rehabilitation with cochlear implant
 – Comparable auditory and speech outcomes compared to nonsyndromic patients with SNHL
 • Yanmei et al. *In J Pediatr Otorhinolaryngol* 2008
Biotinidase Deficiency

- **Features**
 - Rashes
 - Seizures
 - Hair loss
 - Hypotonia
 - Emesis & acidosis
 - Hearing loss
 - 75% occurrence if left untreated

- **Etiology**
 - lacks of enzyme responsible for proper biotin metabolism

[Link to Van Waveren Marken's website](http://www.vanwaverenmarken.com/bioti.htm)
X-linked Syndromes
Alport Syndrome

Features
• Eye
 – Congenital cataracts
• Renal
 – Glomerulonephritis
 – Hematuria
 – Renal failure
• Ear
 – Bilateral progressive SNHL
 – Onset in 2nd decade

Etiology
• mutation in type IV collagen gene COL4A5
Infectious Syndromes
Cytomegalovirus (CMV)

• Epidemiology
 – Incidence of 0.2-2.3% of live births
 – One of the most frequently occurring viruses
 – Leading cause of congenital malformation and mental retardation
 – Most prevalent TORCH infection
CMV Common Clinical Characteristics

- Microcephaly
- IUGR*
- Petechiae*
- Hepatosplenomegaly
- Encephalitis

*2-3 times more likely to have SNHL

Deafness
- 1/3 of SNHL in young children
- May be delayed
- Can be fluctuating and progressive
- Temporal bone studies
 - CMV inclusion bodies in stria vascularis, saccule utricle, SCC, Reissner’s membrane.
 - Endolymphatic hydrops in cochlear ducts
- Stabilization or improvement of hearing with antiviral tx of symptomatic neonates.
 - Dahle et al, J Am Acad Audiol 2000

*SNHL = Sensorineural Hearing Loss

* IUGR = Intrauterine Growth Restriction
CMV
Congenital Rubella

• Classic triad
 – Deafness
 – Congenital cataracts
 – Heart defects

• Etiology
 – RNA togavirus

• Transmission
 – Congenital and postnatal transmission possible
 • Congenital- transplacental
 • Postnatal- saliva, sputum, direct contact
Congenital Rubella

• Diagnosis
 – Positive viral culture
 – Rubella specific IgM antibody
 – Significant rise in IgG antibody in acute and convalescent phase
Congenital Rubella: Clinical

- Microcephaly
- Thrombocytopenia
- Hepatosplenomegally
- Motor/neural retardation
- Encephalitis
- Interstitial pneumonitis

- Hearing loss
 - Asymmetric, SNHL
 - Variable severity
 - May be progressive
 - Usually 500-2000Hz
 - Usually evident by 5 yo
 - May be isolated finding
 - Bento et al., 2005
 - ~30% of infants born to rubella infected mothers had SNHL
 - 80% were profound
Rubella congenital cataracts

www.vaccineinformation.org/photos/rubeiac003a.jpg
Non-Genetic Syndromes
Goldenhar’s Syndrome

• Aka hemifacial microsomia (HFM), facioauriculo-vertebral dysplasia (FAVD)

• Incidence: 1 in 5600 live births
 – Most significant asymmetric craniofacial disorder
Goldenhar’s Syndrome

Facial anomalies (unilateral)
- Hypoplasia of mandible
 - Ramus and condyle
- Hypoplasia of maxilla, malar and temporal bones
- Macrostomia and pseudomacrostomia
- Cleft lip/palate
- Delayed dental development

Otologic abnormalities
- microtia/anotia
- preauricular tags
- ossicular abnormalities
- abnormal facial nerve course
- hearing loss (conductive > sensorineural).
 - HL secondary to abnormal development of 1st and 2nd arch structures

www.earreconstruction.co.uk/fig-microtia/Pair
Goldenhar’s: Non-Head & Neck Manifestations

- **Cardiac**
 - COA
 - VSD
 - TOF
 - PDA

- **Renal**
 - Hydronephrosis
 - Renal ectopia

- **Musculoskeletal**
 - Limb deformities

- **Ocular**
 - blepharoptosis
 - Microphthalmia
 - epibulbar tumors
 - retinal abnormalities leading to reduced visual acuity.
Fetal Alcohol Syndrome (FAS)

- Epidemiology
 - Occurs in 30-40% of children born to alcoholic mothers

- Etiology/Pathogenesis
 - Exact amount of alcohol required unknown
 - Teratogenic restriction of cell growth during critical periods
FAS Characteristics

- Neural tube defects
- Seizure disorder
- Microophthalmia
- Optic nerve hypoplasia
- Tortuous retinal vessels
- Colobomas
- Malignant neoplasms of embryonal origin
- Deafness
 - SNHL or CHL
- Pre/Postnatal growth deficiency
- Behavioral
 - Mental retardation; IQ=63
 - Irritability & hyperactivity
- Cardiac, renal, musculoskeletal abnormalities
Facial Dysmorphisms
Narrow forehead
Short palpebral fissures
Ptotic eyelids
Midface hypoplasia
Short nose
Smooth philtrum
Thin upper lip
Hypoplastic mandible
Cleft palate/lip
Down’s Syndrome

• Epidemiology:
 – Most common syndrome caused by chromosome abnormality

• Etiology
 – Trisomy of chromosome 21
Down’s: Clinical Features

- **Cardiovascular**
 - VSD, TOF, PDA,

- **Genitourinary**
 - Small penis, low testosterone, infertility

- **Musculoskeletal**
 - Atlantoaxial instability, short digits

- **Ocular**
 - Brushfield spots

- **Behavioral/Psych**
 - IQ=30-50
Down’s: Clinical Otolaryngologic

• Ears
 – Small ears, stenotic EAC, ETD
 – Increased incidence of OM
 • ETD
 • Increased propensity for URI
 • Reduced B and T cell function (immune system immaturity)
 – Hearing loss (CHL, SNHL, or mixed)
 • OM
 • Middle ear abnormalities (stapes)
 • May suffer presbycusis
Down’s: Clinical Otolaryngologic

• Airway
 – Upper airway obstruction and OSA
 • Midface hypoplasia
 • Relative macroglossia
 • Relatively enlarged tonsils and adenoids

• Speech
 – Articulation defects/ dysarthria
• The method of treatment should be selected to meet the individual needs of the patient to achieve the most benefit.
• The main purpose of arriving at a syndromic diagnosis is to identify those that will have hearing loss so that early and aggressive hearing rehabilitation can be initialized.
Real life scenario

• www.usherssyndromefoundation.org
Hearing, speech, language, and vestibular disorders in the fetal alcohol syndrome: a literature review.
Church MW, Kaltenbach JA.
Alcohol Clin Exp Res. 1997 May;21(3):495-512. Review

Hearing, language, speech, vestibular, and dentofacial disorders in fetal alcohol syndrome.
Church MW, Eldis F, Blakley BW, Bawle EV.

Treatment of otological features of the oculoauriculovertebral dysplasia (Goldenhar syndrome).
Skarzyński H, Porowski M, Podskarbi-Fayette R.

Goldenhar's syndrome: congenital hearing deficit of conductive or sensorineural origin? Temporal bone histopathologic study.

An overview of hereditary hearing loss.
Bayazit YA, Yilmaz M.

Branchio-oto-renal syndrome.
Kochhar A, Fischer SM, Kimberling WJ, Smith RJ.

Current concepts in the evaluation and treatment of neurofibromatosis type II.
Neff BA, Welling DB.

Cochlear implantation in individuals with Usher type 1 syndrome.
Liu XZ, Angeli SI, Rajput K, Yan D, Hodges AV, Eshraghi A, Telischi FF, Balkany TJ.
Cochlear implantation in patients with Jervell and Lange-Nielsen syndrome, and a review of literature.

Otopathology in Mohr-Tranebjaerg syndrome.
Bahmad F Jr, Merchant SN, Nadol JB Jr, Tranebjaerg L.

The ABCs of CMV.
DeVries J.

Role of cytomegalovirus in sensorineural hearing loss of children: a case-control study Tehran, Iran.
Samileh N, Ahmad S, Mohammad F, Framarz M, Azardokht T, Jomeht E.

Audiometric, surgical, and genetic findings in 15 ears of patients with osteogenesis imperfecta.
Swinnen FK, De Leenheer EM, Coucke PJ, Cremers CW, Dhooge IJ.

Down syndrome: common otolaryngologic manifestations.
Shott SR.

Auditory brainstem response and otoacoustic emission assessment of hearing-impaired children of mothers who contracted rubella during pregnancy.
Bento RF, Castilho AM, Sakae FA, Andrade JQ, Zugaib M.