Sleep and Home Sleep Studies

Resident Physician: Robert Darling, MD
Mentor: Tammara Watts, MD, PhD
The University of Texas Medical Branch
Department of Otolaryngology
Grand Rounds Presentation
November 26, 2013
Disclosures:

- No current monetary disclosures
- Images used without permission
Outline

- History and Introduction to sleep, stages, problems
- History of polysomnography
- Aspects of sleep testing
- Uses
- Home sleep testing, overview, types
- Insurance (Medicaid/Health Choice)
- Comparisons
- Verdict
Sleep

• Essential and wonderful
• Interesting theories as to why we need it and what causes it:
 • 500BC Alcmaeon: Sleep is the loss of consciousness occurring when blood drains from the vessels on the surface of the body
 • 350BC Aristotle: Sleep is a time of physical renewal. “Sleep is a seizure of the primary sense organ, rendering it unable to actualize its powers; arising of necessity for the sake of its conservation.”
Stages of Sleep

- Non REM
 - Stage 1
 - Stage 2
 - Stage 3
- REM
Stages of Sleep

- Non REM
 - Stage 1:
 - Not quite asleep, not quite awake
 - In this stage, the muscles are active and the eyes move slowly
 - Alpha waves predominate
Stages of Sleep

- Non REM
 - Stage 2:
 - Theta activity
 - Becomes more difficult to rouse the sleeper
 - Alpha waves interrupted by sleep spindles and K complexes
Stages of Sleep

- Non REM
 - Stage 3:
 - Previously Divided into stage 3 and 4
 - Slow wave sleep
 - Delta Activity
 - Majority of environmental stimuli (within reason) produce no physical response in the sleeper
Stages of Sleep

- REM
 - *Paradoxical sleep*
 - Sleeper is hardest to awaken
 - EEG demonstrates brain function similar to being awake
 - Oxygen consumption by brain is higher than wakeful state
 - Cycles every 90 minutes
 - Muscles are paralyzed... good... and bad
 - OSA is worst during this stage
Stages of Sleep

- REM continued
Too good to last?

- Sleep disorders
 - Insomnia
 - Bruxism
 - Narcolepsy
 - Idiopathic
 - Night terrors
 - Restless legs
 - Sleepwalking
 - Somniphobia
 - Kleine-Levin Syndrome
 - Periodic limb movement disorders
 - Circadian rhythm disorders
 - Sleep disordered breathing
Sleep Disordered Breathing

- Simple snoring to obstructive sleep apnea
 - Objective studies are required to definitively distinguish
Polysomnography

- Poly ("Much" – i.e. many channels) + Somnus ("Sleep")
- Initially started with the EEG
 - First successfully used on a human brain by the German neurologist Hans Berger
 - Coined term "Elektrenkephalogramm"
- From the EEG, additional measurements were added
 - Eye Movements (EOG)
 - Heart rhythm (EKG)
 - Muscle activity (EMG)
 - Respiratory airflow
 - Respiratory effort
 - Pulse oximetry
Polysomnography

Setup

Generally 12 leads with 1 or more devoted to the following

- EEG
- Airflow monitors
- Chin muscle tone sensors
- Leg movement sensors
- Eye movement sensors (EOG)
- Heart rate/rhythm
- SpO₂
- Chest wall motion sensor
- Upper abdominal motion sensor
Grading PSG

- AHI = \[((\text{Number of apneic episodes} + \text{number of hypopneic episodes}) \times 60) / \text{total sleep time}\]
- RDI = \[((\text{Number of apneic episodes} + \text{hypopneic episodes} + \text{RERAs}) \times 60) / \text{total sleep time}\]

i.e. the average number of _____ events per hour of sleep

- RERAs – respiratory effort related arousals
- Total sleep time is represented in minutes
Polysomnography

- **Respiratory Criteria**
 - **Adults**
 - Apnea is defined as 90% decrease in respiratory flow rate for 10+ seconds
 - Hypopnea is poorly defined, 50-75% decrease in respiratory flow for 10+ seconds, +/- 2-4% decrease in O2 saturation
 - Many insurance companies will only cover treatments for AHI (apnea-hypopnea index) >15, or >5 with 2+ comorbidities
 - AHI 5-14 Mild, 15-29 Moderate, >30 severe
Polysomnography

- Adults
 - Respiratory Criteria
 - Comorbidities
 - HTN
 - CHF
 - Afib
 - CAD
 - Asthma
 - Stroke
 - DM
 - Obesity
 - Nocturia
 - GERD
Polysomnography

- Respiratory Criteria
 - Children
 - Respiratory rate is greater than that of adults
 - Duration of apnea between 6-8 seconds
 - No poorly defined as to what criteria is for children
 - Generally accepted that AHI ≥ 1 is a positive result (prepubescent)
Types of PSG

- **“Whole night study”**
 - Defacto Gold standard for sleep studies, most common type of PSG
 - Diagnostic PSG and CPAP titration are performed on 2 separate nights
- PSG is often performed in “**split night studies**”
 - ½ the night is diagnostic, ½ the night is CPAP titration
 - This practice has never been definitively validated when compared to “whole night studies”
 - If the first half of the split night study is inconclusive for OSA, it is recommended to be converted to full night
 - Decreases latency to CPAP treatment
 - Decreases load on testing infrastructure

- **Multiple Sleep Latency Test**
 - Patient is observed falling asleep multiple times
 - 4-5 20 minute nap opportunities spread out by 2 hours each
 - Narcolepsy testing, gauge of sleepiness
 - Should take the full 15-20 minutes, <5 minutes is severe sleepiness
Contraindications to PSG

- There are no absolute contraindications
- Things to consider
 - Is the patient medically stable to transfer for a study?
 - Adhesive allergies?
 - Seizures?
Home Sleep Testing

- **Components**
 - Oximetry
 - Chest/Abdominal belts
 - Used to determine central vs. obstructive
 - Chest/Abd effort but no airway flow – obstructive apnea
 - No Effort, no airway flow – central apnea
 - No EEG*

- Patients sleep in their own bed!
Home Sleep Testing

- Is (rightly) compared directly to PSG
- Like the attended PSG, home equipment may allow for CPAP titration: **autoPAP**
 - CPAP titration sets a pressure to be used (often for years) based on ~4 hours of poor sleep
 - AutoPAP machines use complex algorithms to titrate the appropriate pressure on a moment-by-moment basis
The Process

- Technician reviews the nature of the test and shows the patient how to attach the apparatus
- Patient must start the recording before going to bed and stop it when they awaken
- They bring the machine back, data is downloaded into computer where data is analyzed
 - Autoscore vs. Manual
 - Autoscore often sufficient
 - Manual correction does not require advanced degrees or excessive training, expert vs amateur K 0.83 in diagnosing OSA
 - Nigro ApneaLink study
 - Medicaid is not satisfied with autoscore
The process

- Mysleeptest.com and NovaSom have a slightly different approach (paired with dentists who make dental appliances)

- http://www.youtube.com/watch?v=fKp_FRdVBk8

- NovaSom is a recording device with 5 channels and no up front clinic costs
Types of Home Sleep Studies

- ApneaLink
- Apnoscreen
- Compass
- Edentec
- Embletta
- Lifeshirt
- MESA M IV
- Poly-MESAM
- Remmers Sleep recorder
- Sandman
- SNAP
- Somnocheck
- Somté
- Stardust
- WatchPAT
- ...and many more!
Types of Home Sleep Studies

- Embletta
 - ResMed
 - Recording device with 14 channels
 - Chest/abd position sensors
 - Pulse oximetry
 - Nasal airflow
 - etc.
 - Cost: $7 disposables, $3500 for device
Types of Home Sleep Studies

- ApneaLink
 - ResMed
 - Recording device with 4 channels
 - Respiratory effort
 - Pulse/oximetry
 - Nasal airflow
- Cost: $10 disposables, $2490 for device
Types of Home Sleep Studies

- Somté Sleep Recorder
 - Multiple available signal inputs (13 channels)
 - EEG
 - EMG
 - Pressure
 - Airflow
 - Thoracic/abdominal effort
 - Limb Position
 - O₂ Sat%
 - Pulse rate/waveform
 - Etc.
 - Cost: $9 disposables, $4500 for device
Types of Home Sleep Studies

- Somté is not entirely unique nor are the other aforementioned data recorders
- Proprietary software
- Find one that you are comfortable with
- All require a nasal cannula to measure airflow except...
Types of Home Sleep Studies

- **WatchPAT**
 - Unique
 - No nasal cannula required
 - Measures Peripheral Artery Tone
 - Mirrors changes in autonomic system
 - Allows for detection of apneas/hypopneas, REM, approximation of sleep architecture
 - Allows for calculation of RDI and AHI using sleep time rather than test time
 - RDI with a smaller denominator will tend to be larger and result in fewer false negatives
 - Cost: $60 disposables, $4400 for device
#1 Obstructive apnea

#2 Paradoxical breathing

#3 Oxyhemoglobin desaturation

#4 Arousal

#5 Leg movement
Coverage of various sleep studies is constantly changing
Current Medicaid

- As of 2006 portable studies were not reimbursable through Medicare/Medicaid
- Updated 4/1/2013
 - Specific considerations for **attended** polysomnography includes:
 - *May* be considered medically necessary as a diagnostic test in patients presenting with: Narcolepsy, sleep apnea, snoring, parasomnias, periodic limb movement disorder, chronic insomnia
 - Specific criteria are listed partly to define and partly as exclusion
 - Sleep apnea – witnessed cessation of breathing, apnea defined as cessation of airflow for ≥10s. Hypopnea is an abnormal breathing event lasting ≥10s and at least 4%O2 desaturation
 - Snoring – Must meet at least one of the following: disturbed sleep, daytime somnolence, excessive fatigue, apneic breathing, hypercapnea
Current Medicaid

- Unattended sleep studies must:
 - Use appropriate device
 - Interpreter must have certification or subspecialty certification in sleep medicine and be an active staff member of an accredited sleep lab (by American Academy of Sleep Medicine or Joint Commission)
 - All of the raw data will be interpreted by the physician/interpreter
 - Test MUST gather 6 hours of data during the patient’s usual sleep period
Current Medicaid

- Patient must have high pretest probability of positive test including 4 of the following:
 - Habitual snoring
 - Witnessed apneas
 - Gasping
 - Morning headaches
 - Daytime somnolence
 - BMI>35, i.e. severe obesity
- No sleep disorders other than OSA must be suspected
- Age >18y (younger is considered purely investigational)
Advantages

- Patients sleep in their own bed, fewer wires
 - More closely approximates patient’s actual sleep cycle
- Uses the same sensors/equipment as PSG
 - Respiratory/oximetry equipment and analysis
 - Chest/Abdomen position sensors
- Report results in familiar format
 - RDI, AHI
- Improves access to sleep study in places w/o labs (or interpreters)
- Cost?
Shortcomings

- Not to be used when evaluating patients who may have:
 - Central sleep apneas
 - Insomnia
 - Periodic limb movement disorder
 - Narcolepsy

- Or patients with significant comorbidity:
 - Neuromuscular disease
 - Congestive heart failure
 - Moderate-severe pulmonary disease
Shortcomings

- Children make for unpredictable patients
 - Young/small children may not have the respiratory volume to accurately drive the meters
 - Age cutoff has been informally set at 4y; however, this is subject to specific equipment and the comfort level of the interpreting professional
Laboratory vs. Portable?

- 2006 Ghegan, Gillespie et al performed meta analysis
 - Prospective Cohort studies
 - Investigated:
 - RDI, Mean low spO2, sleep time(?) , average cost per examination
 - 27 studies examined using 14 different devices
 - All but 1 device (watchPAT) measured respiratory flow, and 9 allowed for measurement of chest wall effort
 - 2-7 different channels per device
 - Compared to in-laboratory PSG values
Results, 12 studies deemed sufficient quality to directly compare RDI and spO2 endpoints
- 9 of the studies indicated no difference in PSG and home sleep study RDI
- 3 studies demonstrated lower home sleep study RDI than PSG
- Pooled results yielded statistically significant answer that home sleep study tends to supply RDI 10% lower than PSG
- Study found no difference in the spO2 between home sleep study and PSG
Ghegan, Gillespie et al

Cost

- Analysis was done for home sleep studies in 4 different countries
- Portable studies are invariably cheaper
 - Ranged from 38%-88% less expensive than in-lab PSG
 - Maximum sleep lab cost was $1800 (American lab)!!!
Ghegan, Gillespie et al

- Poor sleep [time] skewing results?
 - Within this analysis, the amount of estimated sleep time was actually larger in the in-lab PSG group
 - Highly influenced by a single large study
 - Lower portable estimated sleeping times would actually raise the reported portable RDIs
Summary Verdict

- Home sleep study provides similar diagnostic information to attended sleep studies
 - May underestimate severity of disease
 - Not for diagnosis of less common sleep disturbances
- The landscape of medicine is changing
 - Insurances are shifting coverage of a number of previously supported procedures/tests
 - It is not for insurance to determine medical necessity
Summary Verdict

- Home sleep testing reduces cost
- Home sleep study *improves access*

- Home sleep study should be viewed as a viable diagnostic modality... which is awaiting broad acceptance
Bibliography

Bibliography

- Medicaid and Health Choice Sleep Studies and Polysomnography Clinical Coverage Policy No.: 1A-20, revised 4/1/13