Waist circumference (WC), body mass index (BMI), and disability among older adults in Latin American and the Caribbean (LAC)

Sanggon Nam a, Yong-Fang Kuo b,c, Kyriakos S. Markides a,b, Soham Al Snih b,c,d, *

a Division of Sociomedical Sciences, Department of Population Health Sciences, University of Texas Medical Branch, Galveston, TX 77555-1153, USA
b Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555-0177, USA
c Division of Geriatrics, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555-0177, USA
d Division of Rehabilitation Sciences, School of Health Professions, University of Texas Medical Branch, Galveston, TX 77555-0177, USA

ARTICLE INFO

Article history:
Received 16 September 2011
Received in revised form 11 April 2012
Accepted 13 April 2012
Available online 5 May 2012

Keywords:
Obesity
BMI
WC
Disability
Older adults
Latin America
The Caribbean

ABSTRACT

Purpose: To examine the association between WC and BMI on disability among older adults from LAC.

Methods: Cross-sectional, multicenter city study of 5786 subjects aged 65 years and older from the Health, Well-Being and Aging in Latin America and the Caribbean (SABE) study (1999–2000). Sociodemographic variables, smoking status, medical conditions, BMI, WC, and activities of daily living (ADL) were obtained.

Results: Prevalence of high WC (HWC) (>88 cm) in women ranged from 48.5% (Havana) to 72.7% (Mexico City), while among men (>102 cm) it ranged from 12.5% (Bridgetown) to 32.5% (Santiago). The associations between WC and ADL disability were “J” shaped, with higher risks of ADL disability observed above 110 cm for women in Bridgetown, Santiago, Havana, and Montevideo. The association in Sao Paulo is plateau with higher risk above 100 cm, and the association in Mexico City is closer to linear. Among men the associations were “U” (Bridgetown, Sao Paulo, and Havana), “J” shaped (Montevideo), plateau (Santiago), and closer to linear in Mexico City. When WC and BMI were analyzed together, we found that participants from Sao Paulo, Santiago, Havana, and Montevideo in the overweight or obese category with HWC were significantly more likely to report ADL disability after adjusting for all covariates.

Conclusion: The findings of this study suggest that both general and abdominal adiposity are associated with disability and support the use of WC in addition to BMI to assess risk of disability in older adults.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The proportion of older adults has been growing dramatically in the LAC countries during the few decades, and this region now has one of the most rapidly aging populations in the developing nations (Filozof, Gonzalez, Sereday, Mazza, & Braguinsky, 2001; Santos et al., 2004). The percentage of individuals 65 years and over in the region is projected to increase from 13.9% in 2020 to 25.6% in 2040 (Kinsell & He, 2009). The increase in the prevalence of obesity in this aging population is a public health concern, not only in these developing countries but also in developed countries (Filozof et al., 2001; United Nations, 2002). The prevalence of obesity in LAC countries when assessed by BMI, calculated as weight in kilograms divided by height in meters squared (kg/m²), ranges from 13.3% to 37.6% (Al Snih et al., 2010). The rise of this trend toward obesity is expected to cause a subsequent increase in many chronic diseases, which in turn would result in an increase in disability rates (Guallar-Castillon et al., 2007; Uauy, Albala, & Kain, 2001).

Several studies have shown that body composition changes with aging, as evidenced by an increase in fat mass and a decrease in muscle mass (Villareal, Apovian, Kushner, & Klein, 2005; Zamboni et al., 2005); and that aging is associated with fat redistribution, indicated by an increase in visceral fat and a decrease in subcutaneous fat in the abdomen, thighs and calves (Zamboni et al., 2005). BMI has often been criticized as an inadequate measure of obesity among older adults due to these age-related changes in body composition (Villareal et al., 2005; Zamboni et al., 2005). WC, a measure of visceral fatness, has been recommended as a better predictor of obesity in older adults (Chen & Guo, 2008; Guallar-Castillon et al., 2007; Visscher et al., 2001).

Several studies have compared the individual and combined effect of BMI and WC on health outcomes in older adults (Angleman, Harris, & Melzer, 2006; Guallar-Castillon et al., 2007; Jacobs et al., 2010; Janssen, Katzmarzyk, & Ross, 2005). Findings from the Cardiovascular Health Study showed that WC was a positive predictor of mortality independent of BMI.

* Corresponding author at: University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0177, USA. Tel.: +1 409 266 9601; fax: +1 409 772 8931.
E-mail address: soalmsni@utmb.edu (S. Al Snih).
(Janssen et al., 2005). Similarly, Jacobs et al., using the Cancer Prevention Study II Nutrition Cohort, found that within all categories of BMI, higher WC was positively associated with mortality (Jacobs et al., 2010). Barceló et al. reported that WC was more clearly associated than BMI with prevalence of diabetes (Barceló et al., 2007). Cross-sectional and longitudinal studies have shown that WC is a better predictor of disability than BMI. For example, in a prospective cohort study of elderly Spanish individuals, WC was a better 2-year predictor of disability, independent of BMI (Guallar-Castillon et al., 2007). Angleman et al. found that WC was the best predictor of disability outcomes compared with BMI, weight, hip circumference and waist–hip ratio (Angleman et al., 2006).

Current guidelines with respect to obesity recommend measuring WC in persons with a BMI between 25 and 35 kg/m² using the cutoff points of 102 cm in men and 88 cm in women to define abdominal obesity and identify persons at risk for disease (National Heart, 2002). Little is known about the association between HWC and disability among older adults in LAC. The objectives of this study are to investigate the association between HWC and disability, and the association of the combined effect of BMI and WC on disability among older adults from six Latin American cities participating in the SABE study.

2. Materials and methods

2.1. Sample

We examined data from the SABE study (Albala et al., 2005). The SABE study is a cross-sectional representative survey of non-institutionalized older adults living in Buenos Aires (Argentina), Bridgetown (Barbados), Sao Paulo (Brazil), Santiago (Chile), Havana (Cuba), Mexico City (Mexico) and Montevideo (Uruguay) (Palloni, Pinto-Aguirre, & Pelaez, 2002; Peláez et al., 2003). Participants were selected based on a multistage cluster sampling design. In each city, the primary sampling unit (PSU) was a cluster of independent households within predetermined geographic areas. In all countries, except Barbados and Brazil, the sample was chosen in three selection stages. In Barbados and Brazil, two selection stages were used. Each sample consisted of between 1500 and 2000 individuals aged 60 and older and their spouses. In total, 10,970 elderly men and women were interviewed during 1999–2000. The objective of SABE was to produce databases to evaluate demographic, socioeconomic and health variables related to the emerging older population. Participants from Argentina were not included in our analyses since anthropometric measures (BMI and WC) were not collected. The response rate for the countries varied from 65.3% in Montevideo to 95.3% in Havana, and the percentage of interviews completed by a proxy varied from 1.4% in Montevideo to 13.1% in Sao Paulo (Palloni et al., 2002).

We analyzed data from the SABE study for six countries and for subjects 65 years and older (N = 5786). We included participants with complete measures of disability, BMI, WC, and relevant covariates. From the 7371 interviewed 1585 participants were excluded: 1236 had missing information on BMI or a BMI < 18.5 kg/m², 68 had missing data on WC or WC < 50 cm or WC > 140 cm, and 281 had missing information on covariates. The 1585 participants excluded were older, more likely to be female or unmarried, current smokers, subjects who had had a stroke or had ADL disability.

The final number of samples included in the analyses was 994 (Bridgetown), 1285 (Sao Paulo), 844 (Santiago), 1073 (Havana), 675 (Mexico City) and 915 (Montevideo), for a total of 5786 participants (women = 3648 and men = 2138).

2.2. Measurements

2.2.1. Disability

Disability was assessed using the Katz Activities of Daily Living scale (Katz, Ford, Moscowitz, Jackson, & Jaffe, 1963). Interviewers asked if participants experienced difficulty or needed assistance performing the following activities: walking across a small room, bathing, dressing, eating, getting in and out of the bed, and using the toilet. ADL limitations were dichotomized as having difficulty or no difficulty in performing one or more of the six activities.

2.2.2. BMI

BMI was computed by dividing weight in kg/m². BMI was grouped according to the following standards of the National Institutes of Health (NIH) (National Heart, 2002): (< 18.5 = underweight, 18.5–24.9 = normal weight, 25.0–29.9 = overweight, 30.0–34.9 = obesity category I, 35.0–39.9 = obesity category II, and > 40.0 = extreme obesity). For the analyses, a BMI of 18.5–24.9 kg/m² (normal weight) was used as the reference category.

2.2.3. WC

WC was measured at the level of the umbilicus (i.e., belly button) with the subject standing and wearing no more than one layer of outer clothing, using a non-stretchable measuring tape and recorded in centimeters to the nearest millimeter. WC was dichotomized according to NIH recommendations (men, low WC (LWC) ≤ 102 cm and HWC > 102 cm; women, low ≤ 88 cm and HWC ≥ 88 cm) (National Heart, 2002).

2.2.4. Covariates

Sociodemographic variables included age (continuous), gender, years of formal education (continuous) and marital status (married = 1, not married/widowed/separated = 0). Smoking status was assessed by asking whether participants were current smokers, former smokers or never smokers. The presence of medical conditions was assessed by asking if participants had ever been told by a doctor or nurse that they had arthritis, diabetes, heart attack, hypertension, stroke or cancer.

2.2.5. Statistical analysis

Participant characteristics were stratified by country and gender, and examined using descriptive statistics. Univariate comparisons based on continuous variables were conducted with one-way analysis of variance and comparisons involving categorical variables with chi-square tests. Participants were grouped into six categories according to BMI and WC (low or high). Normal BMI (18.5 to < 25 kg/m²) and LWC (≤ 102 cm in men and ≤ 88 cm in women) or HWC (≥ 102 cm in men and ≥ 88 cm in women); overweight (BMI of 25 to < 30 kg/m²) and LWC or HWC; and obesity (BMI ≥ 30 kg/m²) and LWC or HWC.

We examined the association between WC and ADL disability after controlling for all covariates by weighted logistic regression models with restricted cubic splines using three knots (Figs. 2 and 3) (Marsh, 1986; Marsh & Cormier, 2001). This method is more flexible in estimating nonlinear association between WC and ADL disability (Marsh, 1986; Marsh & Cormier, 2001). The log likelihood ratio test was used to examine whether each cubic spline significantly predicts ADL disability by country and gender.

Weighted logistic regression analysis was used to investigate the association between BMI and WC with ADL disability for each country. Two models were performed. Model 1 included BMI + WC, age and gender; and Model 2 included marital status, education, smoking status and medical conditions along with variables included in Model 1. Interaction effect analyses between BMI and WC, and BMI, WC, and gender were performed. All analyses were performed using the SAS for Windows 9.2 survey procedures.
Table 1
Descriptive characteristics for older female living in LAC (N = 3648).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Bridgetown</th>
<th>Sao Paulo</th>
<th>Santiago</th>
<th>Havana</th>
<th>Mexico City</th>
<th>Montevideo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 601</td>
<td>N = 768</td>
<td>N = 563</td>
<td>N = 718</td>
<td>N = 611</td>
<td>N = 587</td>
</tr>
<tr>
<td></td>
<td>Low (N)</td>
<td>High (N)</td>
<td>Low (N)</td>
<td>High (N)</td>
<td>Low (N)</td>
<td>High (N)</td>
</tr>
<tr>
<td>Total</td>
<td>222 (37.0)</td>
<td>379 (63.0)</td>
<td>253 (34.8)</td>
<td>377 (64.3)</td>
<td>369 (51.5)</td>
<td>348 (48.5)</td>
</tr>
<tr>
<td>Age (years), mean (SE)</td>
<td>76.0 (0.5)</td>
<td>74.1 (0.3)</td>
<td>72.3 (0.5)</td>
<td>72.8 (0.4)</td>
<td>74.2 (0.5)</td>
<td>73.8 (0.5)</td>
</tr>
<tr>
<td>Education (years), mean (SE)</td>
<td>5.1 (0.2)</td>
<td>5.2 (0.2)</td>
<td>3.0 (0.3)</td>
<td>2.5 (0.2)</td>
<td>6.3 (0.6)</td>
<td>5.4 (0.6)</td>
</tr>
<tr>
<td>Married marital status (married)</td>
<td>55 (24.6)</td>
<td>86 (22.6)</td>
<td>91 (42.8)</td>
<td>164 (33.7)</td>
<td>41 (11.1)</td>
<td>66 (19.5)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>202 (91.0)</td>
<td>346 (91.3)</td>
<td>192 (74.1)</td>
<td>384 (72.0)</td>
<td>121 (64.9)</td>
<td>248 (66.2)</td>
</tr>
<tr>
<td>Former</td>
<td>20 (9.0)</td>
<td>29 (7.6)</td>
<td>30 (11.5)</td>
<td>96 (20.1)</td>
<td>43 (26.0)</td>
<td>108 (28.0)</td>
</tr>
<tr>
<td>Current</td>
<td>0 (0.0)</td>
<td>4 (1.1)</td>
<td>31 (14.3)</td>
<td>35 (7.9)</td>
<td>22 (9.1)</td>
<td>21 (5.8)</td>
</tr>
<tr>
<td>BMI (kg/m²), mean (SE)</td>
<td>24.1 (0.3)</td>
<td>31.2 (0.4)</td>
<td>23.4 (0.1)</td>
<td>29.7 (0.3)</td>
<td>24.5 (0.4)</td>
<td>30.5 (0.4)</td>
</tr>
<tr>
<td>WC (cm), mean (SE)</td>
<td>81.3 (0.3)</td>
<td>98.7 (0.4)</td>
<td>80.8 (0.4)</td>
<td>101.6 (0.6)</td>
<td>79.2 (0.3)</td>
<td>97.9 (0.4)</td>
</tr>
<tr>
<td>Any ADL limitation</td>
<td>31 (14.2)</td>
<td>59 (15.7)</td>
<td>41 (14.2)</td>
<td>143 (25.1)</td>
<td>53 (26.2)</td>
<td>121 (23.8)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>113 (51.1)</td>
<td>248 (65.5)</td>
<td>92 (37.0)</td>
<td>253 (48.7)</td>
<td>70 (37.2)</td>
<td>173 (47.1)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>36 (16.3)</td>
<td>104 (27.5)</td>
<td>30 (11.8)</td>
<td>116 (23.1)</td>
<td>18 (8.8)</td>
<td>60 (16.9)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>109 (48.8)</td>
<td>225 (59.3)</td>
<td>124 (46.8)</td>
<td>339 (65.8)</td>
<td>97 (46.3)</td>
<td>225 (59.8)</td>
</tr>
<tr>
<td>Stroke</td>
<td>9 (4.2)</td>
<td>23 (6.1)</td>
<td>8 (3.2)</td>
<td>32 (5.8)</td>
<td>11 (6.0)</td>
<td>23 (6.5)</td>
</tr>
<tr>
<td>Heart attack</td>
<td>22 (9.5)</td>
<td>53 (13.9)</td>
<td>45 (15.4)</td>
<td>128 (24.3)</td>
<td>68 (37.5)</td>
<td>139 (35.6)</td>
</tr>
<tr>
<td>Cancer</td>
<td>5 (2.1)</td>
<td>15 (3.9)</td>
<td>9 (2.4)</td>
<td>21 (4.0)</td>
<td>10 (6.3)</td>
<td>17 (4.4)</td>
</tr>
</tbody>
</table>

Note: LWC ≤88 cm and HWC >88 cm. Means and percents were obtained after adjusting for sampling weights and design effects used in SABE study.

<table>
<thead>
<tr>
<th>p-Value</th>
<th>p-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.0001</td>
<td>< 0.001</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

p-Values denote differences between subjects with LWC and HWC for each SABE study.
(PROC SURVEYFREQ, PROC SURVEYLOGIST) (SAS Institute, Cary, NC) to account for design effects and sampling weight in the SABE study.

3. Results

Table 1 presents the descriptive characteristics for older women by WC (low <88 and high >88 cm) for each city. The prevalence of HWC ranged from 48.5% (Havana) to 72.7% (Mexico City). Women with HWC were younger than those with LWC across all cities. Women from Mexico City and Montevideo who had HWC were significantly more likely to have lower level of education, and those from Havana and Montevideo were significantly more likely to be married when compared with those with LWC. The prevalence of ADL disability among those with HWC ranged from 15.7% (Bridgetown) to 28.3% (Santiago). The mean of BMI ranged from 28.9 kg/m² (Havana) to 31.2 kg/m² (Bridgetown and Montevideo), and the mean of WC ranged from 97.9 cm (Havana) to 101.6 cm (Sao Paulo) among those with HWC. Obesity (BMI ≥30 kg/m²) was prevalent among all women with HWC. Arthritis, diabetes, and hypertension were significantly more likely to be reported among those with HWC when compared with those with LWC.

Table 2 presents the descriptive characteristics for older men by WC (low ≤102 and high >102 cm) for each city. The prevalence of HWC ranged from 12.5% (Bridgetown) to 32.5% (Santiago). The prevalence of ADL disability among those with HWC ranged from 14.3% (Bridgetown) to 27.3% (Santiago). The mean of BMI ranged from 27.2 kg/m² (Montevideo) to 31.4 kg/m² (Bridgetown), and the mean of WC ranged from 108.5 cm (Havana and Mexico City) to 112.7 cm (Montevideo) among those with HWC. Obesity (BMI ≥30 kg/m²) was prevalent among all men with HWC. Men from Bridgetown and Sao Paulo with HWC were significantly more likely to report diabetes, and men in Santiago were significantly more likely to report hypertension and those from Bridgetown were more likely to report stroke when compared with those with LWC.

The percent of participants with ADL disability by WC (low or high) and BMI categories after adjusting for sampling weights and design effects for each city is shown in Fig. 1. Percent of ADL disability among those with HWC and normal weight ranged from 8.7% (Bridgetown) to 37.2% (Mexico City). Percent of ADL disability among those with HWC and overweight ranged from 17.9% (Bridgetown) to 28.9% (Santiago). Percent of ADL disability among those with HWC and obesity ranged from 14.5% (Bridgetown) to 27.0% (Santiago).

Fig. 2 shows the adjusted probability of ADL disability as a function of WC. The associations between WC and ADL disability were “J” shaped, with higher risks of ADL disability observed above 110 cm for women from Bridgetown, Santiago, Havana, and Montevideo. The association for Sao Paulo is plateau with higher risk above 100 cm while the association for Mexico City is closer to linear. Among men the associations between WC and ADL disability were “U” (Bridgetown, Sao Paulo, and Havana), “J” shaped (Montevideo), plateau (Santiago), and closer to linear in Mexico City (Fig. 3). All the associations were significant (p-value <0.05) except for men from Santiago.

Table 3 presents the odds ratio for ADL disability as a function of WC and BMI category. Overweight or obese participants with HWC from Sao Paulo, Santiago, Havana, and Montevideo were significantly more likely to report ADL disability after adjusting for age and gender (Model 1). When education, marital status, smoking status, and medical conditions were added to Model 1, the association remained statistically significant except for Santiago (Model 2). No significant association was found between HWC and BMI category among participants from Bridgetown and Mexico City. No significant interaction effects were found between BMI and WC, and between BMI, WC, and gender.

4. Discussion

This study examined the prevalence of HWC (>88 cm in women and >102 cm in men) and the combined effect of BMI and WC on ADL disability among older adults from six LAC cities. The highest prevalence of HWC was found in Mexico City for women and Santiago for men. The highest prevalence of ADL disability among those with HWC was seen in men and women from Santiago. The association between WC and ADL disability was mostly “J” shaped among women and “U” or “J” shaped among men. When examining the combined effect of BMI and WC on ADL disability, we found that overweight or obese participants with HWC from Sao Paulo, Santiago, Havana, and Montevideo were significantly more likely to report ADL disability.

These findings are consistent with previous research showing that HWC is significantly associated with disability among older adults (Chen & Guo, 2008; Guallar-Castillon et al., 2007; Jansen et al., 2005). Data from a cross-sectional study of elderly Hispanics
Table 2
Descriptive characteristics for older male living in LAC by WC (N = 2138).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Bridgetown Low</th>
<th>Bridgetown High</th>
<th>Sao Paulo Low</th>
<th>Sao Paulo High</th>
<th>Santiago Low</th>
<th>Santiago High</th>
<th>Havana Low</th>
<th>Havana High</th>
<th>Mexico City Low</th>
<th>Mexico City High</th>
<th>Montevideo Low</th>
<th>Montevideo High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), mean (SE)</td>
<td>74.1 (0.4)</td>
<td>72.5 (0.9)</td>
<td>73.0 (0.7)</td>
<td>72.4 (0.6)</td>
<td>73.8 (0.4)</td>
<td>72.4 (0.8)</td>
<td>72.5 (0.4)</td>
<td>72.6 (0.7)</td>
<td>72.5 (0.4)</td>
<td>72.9 (0.7)</td>
<td>6.4 (0.3)</td>
<td>5.5 (0.2)</td>
</tr>
<tr>
<td>Education (years), mean (SE)</td>
<td>5.1 (0.2)</td>
<td>3.5 (0.3)</td>
<td>7.2 (0.9)</td>
<td>6.1 (0.7)</td>
<td>7.2 (0.3)</td>
<td>7.4 (0.5)</td>
<td>5.4 (0.4)</td>
<td>4.8 (0.7)</td>
<td>4.8 (0.4)</td>
<td>4.8 (0.7)</td>
<td>6.4 (0.3)</td>
<td>5.5 (0.2)</td>
</tr>
<tr>
<td>Married marital status (married)</td>
<td>183 (52.8)</td>
<td>97 (74.9)</td>
<td>131 (75.5)</td>
<td>61 (77.0)</td>
<td>179 (59.2)</td>
<td>37 (72.8)</td>
<td>143 (73.8)</td>
<td>46 (71.6)</td>
<td>171 (71.0)</td>
<td>57 (68.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td>149 (43.6)</td>
<td>73 (37.6)</td>
<td>104 (36.6)</td>
<td>52 (37.0)</td>
<td>70 (36.5)</td>
<td>38 (33.9)</td>
<td>75 (38.3)</td>
<td>48 (40.0)</td>
<td>65 (35.5)</td>
<td>18 (22.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²), mean (SE)</td>
<td>25.0 (0.3)</td>
<td>29.4 (0.3)</td>
<td>101 (43.3)</td>
<td>86 (38.0)</td>
<td>112 (38.3)</td>
<td>94 (40.7)</td>
<td>105 (45.5)</td>
<td>94 (40.7)</td>
<td>105 (45.5)</td>
<td>94 (40.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical conditions</td>
<td>118 (34.5)</td>
<td>24 (10.3)</td>
<td>200 (66.7)</td>
<td>19 (37.0)</td>
<td>100 (33.2)</td>
<td>23 (43.3)</td>
<td>86 (33.8)</td>
<td>14 (25.8)</td>
<td>86 (33.8)</td>
<td>42 (47.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>8 (2.2)</td>
<td>7 (2.2)</td>
<td>12 (3.6)</td>
<td>4 (3.4)</td>
<td>9 (2.6)</td>
<td>0 (0.0)</td>
<td>7 (2.2)</td>
<td>2 (2.9)</td>
<td>4 (2.0)</td>
<td>1 (1.0)</td>
<td>14 (5.8)</td>
<td>3 (3.4)</td>
</tr>
</tbody>
</table>

Note: LWC <88 cm and HWC >88 cm. Means and percents were obtained after adjusting for sampling weights and design effects used in SABE study.

* p-Value < 0.0001.
† p-Value < 0.001.
‡ p-Value < 0.01.

p-Values denote differences between subjects with LWC and HWC for each SABE study.
in Massachusetts demonstrated a relationship between greater WC and higher frequency of ADL limitations (Chen & Guo, 2008). Guillar-Castillon et al. found an association between WC and self-reported disability, independent of BMI, among people aged 60 years and over in a longitudinal study in Spain (Guillar-Castillon et al., 2007).

The increase of obesity in older adults is a public health concern in the region of LAC because this trend may lead to a subsequent

<table>
<thead>
<tr>
<th>Variables</th>
<th>Bridgetown</th>
<th>Sao Paulo</th>
<th>Santiago</th>
<th>Havana</th>
<th>Mexico City</th>
<th>Montevideo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)*</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWC * normal BMI</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>LWC * overweight</td>
<td>0.74 (0.38–1.45)</td>
<td>1.01 (0.57–1.78)</td>
<td>1.22 (0.77–1.96)</td>
<td>0.81 (0.47–1.38)</td>
<td>1.18 (0.62–2.26)</td>
<td>1.90 (0.86–4.21)</td>
</tr>
<tr>
<td>LWC * obesity</td>
<td>0.60 (0.16–2.20)</td>
<td>0.87 (0.11–6.96)</td>
<td>0.44 (0.07–2.73)</td>
<td>0.77 (0.26–2.27)</td>
<td>0.30 (0.04–2.37)</td>
<td>1.23 (0.54–2.82)</td>
</tr>
<tr>
<td>HWC * normal BMI</td>
<td>0.57 (0.19–1.73)</td>
<td>1.84 (0.83–4.06)</td>
<td>1.66 (0.45–6.14)</td>
<td>0.86 (0.37–1.99)</td>
<td>2.13 (0.81–5.57)</td>
<td>3.26 (1.31–8.12)</td>
</tr>
<tr>
<td>HWC * overweight</td>
<td>1.46 (0.83–2.56)</td>
<td>1.78 (1.14–2.79)</td>
<td>1.55 (0.83–2.87)</td>
<td>1.74 (1.04–2.91)</td>
<td>1.35 (0.74–2.46)</td>
<td>3.05 (1.59–5.83)</td>
</tr>
<tr>
<td>HWC * obesity</td>
<td>1.43 (0.81–2.54)</td>
<td>2.45 (1.56–3.86)</td>
<td>1.68 (1.01–2.80)</td>
<td>2.15 (1.27–3.65)</td>
<td>1.62 (0.89–2.97)</td>
<td>3.01 (1.53–5.93)</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LWC * normal BMI</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>LWC * overweight</td>
<td>0.80 (0.41–1.57)</td>
<td>0.97 (0.54–1.76)</td>
<td>1.26 (0.72–2.20)</td>
<td>0.79 (0.45–1.37)</td>
<td>1.24 (0.63–2.45)</td>
<td>1.82 (0.81–4.08)</td>
</tr>
<tr>
<td>LWC * obesity</td>
<td>0.65 (0.17–2.43)</td>
<td>0.66 (0.07–6.09)</td>
<td>0.38 (0.05–2.61)</td>
<td>0.84 (0.30–2.35)</td>
<td>0.20 (0.04–1.05)</td>
<td>0.95 (0.40–2.27)</td>
</tr>
<tr>
<td>HWC * normal BMI</td>
<td>0.59 (0.18–1.84)</td>
<td>2.01 (0.89–4.53)</td>
<td>1.41 (0.32–6.20)</td>
<td>0.74 (0.31–1.76)</td>
<td>1.99 (0.74–5.36)</td>
<td>3.04 (1.25–7.39)</td>
</tr>
<tr>
<td>HWC * overweight</td>
<td>1.26 (0.70–2.28)</td>
<td>1.67 (1.04–2.68)</td>
<td>1.12 (0.56–2.24)</td>
<td>1.58 (0.93–2.68)</td>
<td>1.41 (0.73–2.70)</td>
<td>3.13 (1.64–5.98)</td>
</tr>
<tr>
<td>HWC * obesity</td>
<td>1.21 (0.67–2.11)</td>
<td>1.98 (1.21–3.24)</td>
<td>1.38 (0.76–2.52)</td>
<td>1.95 (1.15–3.31)</td>
<td>1.52 (0.81–2.86)</td>
<td>3.05 (1.50–6.19)</td>
</tr>
</tbody>
</table>

* Odds ratio and 95% CI were obtained after adjusting for sampling weights and design effects used in SABE study.

Model 1: controlled for age and gender.
Model 2: controlled for age, gender, marital status, education, smoking status, and medical conditions (arthritis, diabetes, heart attack, stroke, hypertension, and cancer). CI, confidence interval.
LWC <88 cm in women and ≤102 cm in men.
HWC <88 cm in women and >102 cm in men.
Normal BMI = 18.5 to <25 kg/m².
Overweight = BMI of 25 to <30 kg/m².
Obesity = BMI ≥30 kg/m².
increase in many chronic diseases, which, in turn, would result in a dramatic increase in functional disabilities (Guallar-Castillón et al., 2007; Uauy et al., 2001). As people grow old, muscle mass and strength decrease, and body fat increases (National Heart, 2002). Moreover, obesity including overweight is likely to cause pain on weight-bearing, limiting older people's ability to exercise continually, and regularly (Houston et al., 2009). Also, metabolic abnormalities in obesity lead to higher rate of cardiovascular disease (CVD), diabetes, and arthritis, all associated with higher risk of disability (Houston et al., 2009).

BMI has usually been the measurement indicator when examining the relationship between obesity and disability. However, WC alone or combined with BMI should be considered as another predictor of disability in the older adult population. A HWC is one of the primary risk factors for Type 2 diabetes, dyslipidemia, hypertension, and CVD particularly in overweight and obese people (Chan, Rimm, Colditz, Stampfer, & Willett, 1994; Kuczarski, Carroll, Flegal, & Troiano, 1997; National Heart, 2002; Zhu et al., 2004). WC is the measurement of sagittal abdominal diameter, which offers higher precision and better correlation with CVD risk factors and comorbidities, independently of BMI (National Heart, 2002; Turcato et al., 2000). WC and BMI as a combined obesity marker for the older population could offer a measurement for use in research and clinical settings, linking obesity to disability and other health outcomes.

Our study has some limitations. First, this research could not investigate the causal relationship between HC and ADL disability due to the cross-sectional research design. Second, since disability and medical conditions were self-reported, matters of recall bias may be an issue, particularly for older adult participants. However, other investigators have found good agreement between self-reported medical events and comorbid diseases or conditions (Haapanen, Milunpalo, Pasanen, Oja, & Vuori, 1997; Simpson et al., 2004). Third, exclusion of participants with missing information could underestimate the effect of WC on disability. Despite these limitations, this study has several strengths. First, the survey data in six capital cities was from a large well-defined organized sample. Survey measurements were consistent across all cities, allowing for direct comparisons. Although different groups of interviewers implemented this survey, all had consistent and uniform training in data collection and measurement procedures in each city for assessment of BMI, WC, and disability. Second, this research was generalizable to all older adults in the cities of origin in LAC because most of the older adults in these areas live in urban settings (Economic Commission for Latin America and the Caribbean, 2004).

5. Conclusions

We found a "J" or "U" shaped association between WC and ADL disability, and that overweight and obese participants with HWC have significant odds of ADL disability. The findings of this study suggest that both general and abdominal adiposity are associated with disability and support the use of WC in addition to BMI to assess risk of disability in older adults.

Conflict of interest statement

None.
Funding

This study is supported by grants R03-AG029959, R01-AG010939, R24-HD065702, and by the UTMB Claude D. Pepper Older Americans Independence Center Grant # P30 AG024832 from the NIH/National Institute of Aging, U.S. Dr. Al Snih was supported by a research career development award (K12HD052023: Building Interdisciplinary Research Careers in Women's Health Program – BIRCWH) from the Eunice Kennedy Shriver National Institute of Child Health & Human Development; the National Institute of Allergy and Infectious Diseases; and the Office of the Director, NIH. The content is solely the responsibility of the author(s) and does not necessarily represent the official views of these institutes or the NIH. The funding agencies did not influence the design, analysis or interpretation of study results.

References

