After a successful run that spanned five decades, the final Impact was published in January 2020.  Impact was UTMB Health’s employee newsletter. It evolved from a one color printed tabloid newspaper to a full color magazine with a digital component. We’ve archived the past several years on these pages for your review and enjoyment.

utmbnewslettertab

Impact is for and about the people who fulfill UTMB’s mission to improve health in Texas and around the world. We hope you enjoy reading this issue. Let us know what you think!

vaccine vials

UTMB researchers discover ways to cut costs of vaccine production, storage

Dec 28, 2018, 20:15 PM by Donna Ramirez

Vaccines

UTMB RESEARCHERS HAVE DEVELOPED 
a less expensive way to produce vaccines that cuts the cost of vaccine production and storage by 80 percent without decreasing safety or effectiveness. 

Vaccines are the most effective way to prevent and eradicate infectious diseases. Currently, many vaccines have to be manufactured in cell culture or eggs, which is expensive and carries the risk of contaminations. In addition, most vaccines must be kept refrigerated during transportation from manufacturers to health care clinics.

In tropical and subtropical regions, such cold storage requirements could contribute to more than 80 percent of the vaccine cost.

“The ability to eliminate cell culture or eggs and cold storage will change the process of vaccine development,” said UTMB’s Pei-Yong Shi, professor in the Department of Biochemistry and Molecular Biology. “Importantly, this vaccine technology could potentially serve as a universal platform for development of vaccines made from live virus for many viral pathogens.”

To achieve these goals, the UTMB team engineered a live-attenuated Zika vaccine (in which a weakened form of the virus is used to create immunity without causing disease) in the DNA form, rather than by traditional methods. Once the DNA is delivered into the body, it launches the vaccine into cells, leading to antibody production and other protective immunity. With this production method, there is no need to manufacture the vaccine in a cell culture or eggs at factories. Because DNA molecules are shelf-stable, the vaccine will not expire at warm temperatures and could be stockpiled at room temperature for years.

Using UTMB’s Zika vaccine as a model, the research group showed that the DNA platform worked very efficiently in mice. After a single low dose, the DNA vaccine protected mice from Zika virus infection, mother-to-fetus transmission during pregnancy, and male reproductive tract infection and damage.

“This is the first study to demonstrate that, after a single low dose, a DNA vaccine could induce saturated protective immunity,” Shi said. “We will continue testing this promising Zika vaccine platform and then apply the platform to other viruses.”

Other authors include UTMB Drs. Jing Zou, Xuping Xie, Huanle Luo, Chao Shan, Antonio Muruato, Scott Weaver and Tian Wang.  

Categories