Randall Urban, MD
Vice President for Research &
Chief Research Officer

Dr. Randall Urban

Dr. Randall Urban leads a diverse research community in the bold mission to improve medical practice through progressive translational research endeavors. He has 145 peer-review publications, is the Principal Investigator of UTMB's Clinical and Translational Science Award, and has 3 major research interests funded by the NIH and private foundations. In addition to Vice President for Research and Chief Research Officer, Dr. Urban is Vice Dean for Clinical Research in the John Sealy School of Medicine, Professor of Internal Medicine, Director of the Institute for Translational Sciences, and Fellow, John P. McGovern Distinguished Chair in Oslerian Medicine.

Strategic Research Plan

The Strategic Research Plan, which is used by leadership to  develop a path forward through goals, objectives and tactics, has broad input. It includes six integrated health communities that bring together researchers, educators, clinicians and community members to use prevention and treatment to transform illness to health. Read more.

researchfundingbadges
Research Funding
Awards Processed
Lab Space
See more research facts and figures online

RESEARCH ANNOUNCEMENTS

 


 


RESEARCH NEWS


UTMB researchers have discovered a new antiviral mechanism for dengue therapeutics

GALVESTON, Texas – A multidisciplinary team from The University of Texas Medical Branch at Galveston has uncovered a new mechanism for designing antiviral drugs for dengue virus.

Dengue virus is a very important mosquito-transmitted viral pathogen, causing 390 million human infections each year. Dengue is common in more than 100 countries and forty percent of the world’s population is at risk of infection. When someone becomes ill with dengue, symptoms that can range from mild to severe may include fever, nausea/vomiting, rash and muscle/bone/joint aches. Despite this, there are no clinically approved drugs currently available to people who become infected.

In this study, the UTMB team has solved the co-crystal structure of the dengue capsid protein, which forms the interior of virus, in complex with an inhibitor. The co-crystal structure has provided atomic details of how the inhibitor binds the capsid protein and blocks its normal function, leading to the inhibition of viral infection. The structural information has opened new avenues to rationally design inhibitors for antiviral development.

“There are four types of dengue virus, all of which can cause epidemics and disease in humans. The current inhibitor does not inhibit all types of dengue virus. Our co-crystal structure explains why this is the case,” said Pei-Yong Shi, I.H. Kempner professor of Human Genetics at UTMB. “Using this new information, we will be able to design new drugs that can inhibit all types of dengue virus. In addition, the structural information will also enable us to make compounds with improved potency and drug-like properties.”

“The inhibitor binds four capsid molecules to form a tetramer. Such capsid tetramers are assembled into dengue virus,” said Mark White, Associate Professor at UTMB who co-senior authored the study. “However, such a tetramer-containing virus is not able to productively infect new cells. Our study also explains how resistance emerges when dengue virus is treated with the inhibitor. A resistant virus emerges through one amino acid change that weakens the compound binding to the viral capsid protein.”

“The World Health Organization lists dengue virus as one of the top ten public health threats and as such requires the urgent development of effective vaccine and therapeutics,” said Hongjie Xia, UTMB postdoctoral fellow and lead author of the study. “Although we are currently coping with COVID-19 pandemic, Singapore and other regions are experiencing a record number of dengue human cases. This motivates our team to develop clinical treatments for this devasting disease.”

Other authors include UTMB’s Xuping Xie, Jing Zou, William Russell, Luis Marcelo Holthauzen and Kyung Choi.

To develop antiviral drugs, the UTMB team has received grants from National Institutes of Health and philanthropic support from the Sealy & Smith Foundation; Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation; John S. Dunn Foundation; Amon G. Carter Foundation; Gillson Longenbaugh Foundation; Summerfield G. Roberts Foundation.